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ABSTRACT
This paper presents an optimal architecture for hardware
implementation of Context-Free Grammar (CFG) parsers,
which can be used to accelerate the performance of appli-
cations where response to real time signal processing is a
crucial aspect, such as Electrocardiogram (ECG) analysis.
Our architecture increases the performance by a factor of
approximately two orders of magnitude compared to the
pure software implementation, depending on the CFG. This
speed up derives mainly from the hardware nature of the
implementation, the innovative combinatorial nature of the
circuit that implements the fundamental operation of the
parsing algorithm and the underlying data representation.
We further propose an automated synthesis tool that, given
the specification of an arbitrary CFG and using the afore-
mentioned hardware architecture in a template form, gener-
ates the HDL (Hardware Design Language) synthesizable
source code of the hardware parser for the given grammar.
The proposed architecture may be used for real time appli-
cations, e.g. natural languages interfaces. The generated
source has been simulated for validation, synthesized and
tested on a Xilinx FPGA (Field Programmable Gate Array)
board.
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1 Introduction

Many signal processing problems require syntactic analy-
sis. In some applications this comes as a direct result of the
application nature itself, e.g., speech recognition systems.
In others, like image analysis or biomedical signal analysis,
this requirement arises indirectly from the method applied
on the problem [1], [2]. In the latter case, it is a com-
mon practice to formulate the rules governing the relations
between the patterns (e.g., relative position of objects in an
image analysis system, or sequence of patterns in a biomed-
ical signal analysis) by a grammar. Thus, the algorithms
used for the syntactic analysis can significantly affect the
efficiency of the overall signal processing system.
Context-free grammars (CFGs) combine expressive power

and simplicity. They are powerful enough to describe the
syntax of programming languages [1] (almost all program-
ming languages are defined via context-free grammars) and
simple enough to allow the construction of efficient pars-
ing algorithms. Additionally, general context-free methods
are exploited today in various application domains, such as
speech recognition, natural language processing and image
analysis [2], [3]. The large amount of data manipulated
by those methods and today’s requirement of conforming
to very strict real-time constraints, turns the implementa-
tion of CFG-parsers that are optimized for performance
more useful and imperative than ever. Two key factors that
positively influence the CFG-parser’s performance are un-
doubtedly the parsing algorithm itself as well as the imple-
mentation approach (software or hardware).
With respect to the first key factor, many modifications
[4], [5] and improvements via parallelization [6] have been
proposed for the well known classical parsing algorithms
by Cocke-Younger-Kasami (CYK) [7], [8] and Earley [9].
The CYK algorithm requires the grammar to be in Chom-
sky Normal Form (CNF). Every GFG can be put in CNF,
so, this requirement does not restrict the generality of the
CYK algorithm. However, the transformation of a CFG G
into an equivalent one in CNF cannot be carried out with-
out a price: the size of the latter can be O(|G|2) [10], [11],
[12].
With respect to the second key factor, Chiang & Fu [6]
and Cheng & Fu [13] have presented designs using VLSI
arrays for the hardware implementation of the above pars-
ing algorithms, while Ibbara et al. [14] and Ra et al.
[15] presented software implementations running on par-
allel machines. The hardware oriented approach was rein-
vigorated by presenting implementations in reconfigurable
FPGA boards of the CYK algorithm by Ciressan [16] and
Bordim et al. [17] and Earley’s algorithm by Pavlatos [18],
[19]. The architectures proposed so far do not fully exploit
the available parallelization in the parsing algorithms, or
they require excessive storage. The software approaches
execute a part of the algorithms sequentially, thus they do
not achieve the maximum possible speed-up. On the other
hand, the hardware approaches must overcome the com-
plexity that the operations involved in the parsing algo-



rithms impose, leading to increased storage needs. In or-
der to relax the hardware complexity most of the proposed
architectures implement CYK algorithm, whose basic op-
erations are much simpler than those of Earley’s. How-
ever, the advantages of CYK algorithm are actually com-
promised by the fact that a costly transformation of the
grammar is required. The first approach to implement in
FPGA the Earley’s algorithm was given in [18]. Never-
theless, the approach proposed in our paper is based on
mapping the fundamental operation of the algorithm to an
efficient combinational circuit, achieving a further increase
in performance by a factor of an order of magnitude, com-
pared to [18] and two orders of magnitude compared to
the software approach.In this paper, we address these prob-
lems by presenting a modified algorithm for CFG parsers
and an efficient architecture implemented in reconfigurable
hardware. The merits of our approach can be summarized
in the followings:

• We propose a new parallel parsing architecture, which
compared to the so far presented architectures, re-
duces the required number of processing elements by
a factor of n+1

2 , where n is the length of the input
string, while maintaining a simple and elegant com-
munication scheme.

• We propose a combinational circuit C⊗ that imple-
ments the fundamental operation ⊗ of the parsing al-
gorithm [6] in extremely short time (execution time
comparable to propagation delay of a few logic gates).
By the use of appropriate number of C⊗ circuits (see
next sections) we achieve to compute every cell of
the aforementioned architecture in parallel. We dis-
tinct then a two-level parallelism, one local (cell-level)
which corresponds to the execution of the operation,
and one global (architecture level) which corresponds
to the tabular form of the algorithm.

• We propose an innovative data representation that not
only allows us to implement the operation in parallel,
but also permits the storage of the grammar not to be
necessary, since it is hardwired. Via the use of a binary
equations system, the characteristics of the grammar
are incorporated into the combinational circuit.

• Taking into consideration the hardware nature of the
implementation, the presented architecture achieves a
speed-up factor of two orders of magnitude compared
to software approaches.

• Our implementation does not require the grammar to
be ε-free, where ε is the empty string. Otherwise,
this is a restriction because the number of rules of
the equivalent ε-free grammar may be significantly in-
creased. Additionally, by implementing Earley’s algo-
rithm no restriction in the form (i.e CNF) of the gram-
mar is posed and, therefore, no costly transformation
of the initial grammar is required.

Figure 1. Overview of our architecture

• Finally, we use the proposed architecture in a tem-
plate form, so as to present an automated tool that
given the specification of an arbitrary CFG, generates
the HDL (Hardware Design Language) synthesizable
source code of the hardware parser for the given gram-
mar.

The proposed architecture was used for the rapid de-
velopment of an implementation for the analysis of
Electrocardiogram(ECG)[20] signal, as well as a consid-
erable number of applications such as the fast translation
of natural language or programming language code in real
time applications (e.g. natural languages interfaces) or in-
ternet applications (e.g. semantic nets) or more general in
intelligence embedded systems augmenting the syntax with
semantics rules [21], [22].

2 Overview of our approach

The proposed design is a hardware parallel parser for
CFGs, which significantly improves the performance of ex-
isting CFG parsers by enhancing the architecture, by accel-
erating the execution time of the fundamental operation ⊗
of the parsing algorithm [6] and by proposing an innovative
data representation.

Previously presented architecture [6] was based on the
construction of a Parsing Table (PT) that can be paral-
lelized with respect to the length of the input string n
(a1a2an) by computing at step k the cells pt(i, j) for which
j − i = k ≥ 1. Each PT cell pt(i,j), in order to be com-
puted by the use of operation ⊗ , requires all the cells
that belong to the same row of the table and are left of it
(pt(i, m), (i + 1) < m < (j − 1)), and all the states of
the cells that belong to the same column of the table and
are below of it (pt (n, j) ,(i + 1 < n ≤ (j − 1))). In every
execution step, each processing element computes one cell
and then during the communication step transmits to other
processing elements data that will be needed for next com-
putation steps. Consequently, (n+1)n

2 processing elements
are needed, since only the cells on and above the PT diag-
onal are used.



On the contrary, the proposed parallel architecture (Figure
1a) is based on n processing elements (P1, P2, . . . , Pn), re-
ducing therefore the FPGA real-estate needs by a factor of
n+1

2 . The processing elements implementation is presented
in section 4. Additionally, the architecture communica-
tion scheme is improved as well, since no vertical trans-
missions are required; each processing element gradually
computes the cells of a column. Every processing element
computes a PT cell in each execution step (te1, te2, . . . , ten)
and transmits this element, only horizontally, as well as all
the cells that belong to the same row of the table and are
left of it, during the communication step (tc1, tc2, . . . , tcn),
to the processor right of it. Cells are computed by apply-
ing the operation ⊗, which is implemented by the use of a
proposed combinational circuit C⊗ , easily built based on
the equations we can automatically create for every CFG,
following the methodology analyzed in section 5.2. We
noticed that the calculation process of each cell pt(i, j) can
also be parallelized due to the nature of the equation in Fig-
ure 1b. All ⊗ operators can be executed in parallel by the
use of multiple C⊗ circuits, whose output union produce
the pt(i, j) (Figure 1c).
We distinct then a two-level parallelism, one local (cell-
level) which corresponds to the execution of the operation,
and one global (architecture level) which corresponds to the
tabular form of the algorithm. The obvious importance of
the C⊗ speedup, so as to increase the overall performance,
lead us to propose i) a combinational circuit that imple-
ments the C⊗ in extremely short time (execution time com-
parable to propagation delay of a few logic gates) and ii) an
efficient data representation, suitable for the presented cir-
cuit (Section 5.1).
Taking into consideration the hardware nature of the im-
plementation, the presented architecture achieves a speed-
up factor of two orders of magnitude compared to software
approaches, as shown in section 6.

3 NOTATIONS

In this section the fundamental definitions necessary for
presenting Earley’s original algorithm are given, as well
as the subsequent modifications imposed by various re-
searchers to the latter algorithm and the herewith propos-
als.

Definition 3.1 A Context Free Grammar (CFG) G is a
quadruple G=(V, N, P, S), where: V is the finite set of sym-
bols of the grammar, N is the set of nonterminal symbols,
T = V − N is the set of terminal symbols, P ⊆ N × V �

is the finite set of rules and S is the start (nonterminal)
symbol of the grammar.

Rules have the form A → α, where A ∈ N and
α ∈ V �; A is the left hand side symbol (lhss) and α is the
string of the right hand side symbols (rhss) of the rule. A
recognizer for G is an algorithm that takes as input a string
of terminals a1a2 . . . an and either accepts it or rejects it,
depending on whether the string is a sentence of G or not.

Capital letters A, B, C,. . . denote nonterminals, lower case
letters a, b, c, . . . denote terminals, lower case letters u, v,
w, . . . denote strings of terminals, Greek letters α, β, γ,
. . . denote strings of terminal and nonterminal symbols and
ε denotes the empty string. The notation β

∗−→ γ denotes

that γ can be derived from β by applying zero or more times
some rules in P.
A nonterminal A is called nullable if A

∗−→ ε.

A string w of terminals is a sentence of G if S
∗−→ w. A

grammar G is reduced [11] if for every A ∈ N the follow-
ing hold: (i) S

∗−→ αAβ, and (ii) there exists a sentence

w such that A
∗−→ w.

Without loss of generality we assume that the underlying
CFG is reduced. In this case, the appropriate measure of
the size of G, denoted |G|, is

∑
r∈P |r|, where |r| is the

length (the number of right hand symbols) of rule r.
In 1970 Earley[9] presented a top-down parser, whose ba-
sic innovation was the introduction of a symbol called dot
“•” that does not belong to the grammar. The utility of the
dot in a rule (now called dotted rule) is to separate the right
part of the rule into two subparts. For the subpart on the
left of the dot, it has been verified that it can generate the
input string examined so far. However, for the subpart on
the right of the dot, it still remains to check whether or not
it can generate the rest of the input string. For any given
rule A → α there are exactly |α| + 1 dotted rules, as many
as the possible positions of the dot. When the dot is at the
final position, the dotted rule is called completed. Prior to
reading any input symbol, the dotted rules are in the form
A →• α. As we start reading input symbols new dotted
rules are created. If after reading the last input symbol a
dotted rule of the form S → α• exists, then the input string
is a sentence of the grammar. The way in which dotted
rules are created during the parsing of the input string can
be efficiently formulated by the operator ⊗ that was first
introduced by Chiang & Fu [6]. This operator takes as in-
put a set of dotted rules and a terminal symbol or another
set of dotted rules and produces a new set of dotted rules;
its detailed definition is given in definition 5.1, section 5
where the analysis of the proposed circuit is presented.
The number of dotted rules of P • is bounded above by |G|
(there may be less than |G| dotted rules because rules of the
form A → • are not taken into consideration). P • denotes
the set of dotted rules that arise from P .

4 HARDWARE DESIGN IMPLEMENTA-
TION

The proposed implementation is mainly based on the exis-
tence of a basic module, called Processing Element Module
(PEM), described in Verilog HDL. Every processing ele-
ment (P1, P2, . . . Pn) shown in Figure 1 is implemented as
a PEM instance. Every PEM calculates in each execution
step (te1, te2, . . . ten) a cell of PT as shown in Figure 1b. In



h memory

C�
circuits

q memory u memory

Control
unit

Cell1

C�
circuits

q memory u memory

Control
unit

Cell 2

C�
circuits

q memory u memory

Control
unit

Cell n

h memory . . .

Contol Unit

Control bus

τ [1] τ [2] τ [n]

Figure 2. Architecture overview

order PEM to implement the architecture Figure 1b, a nec-
essary number of C⊗ circuits are required, as well as two
essential memory units - q and u. The first, q is utilized for
the storage of the data that come from the same processing
element, but belong to a lower cell of the PT. The second,
u is utilized for the storage of data that come from cells on
the left of the current PEM. Clearly a PEM Control Unit is
needed to guide the operations performed by the PEM such
as producing the proper addresses of memories, fetching
data e.t.c. In each execution step the necessary data are
fetched from memories q and u, processed by C⊗ circuits
and their union (U) produces the output data. The output
data, computed by a PEM, are stored in a memory - h mem-
ory - interconnecting two successive PEMs, as well as in its
u memory so as to use it at the next execution steps. Each
PEM sequentially executes repeatedly three operations, the
execution step, the sending step and the receiving step. All
the operations performed by the PEMs are guided through a
Control bus, by the usage of a Control Unit. All the above,
are shown in Figure 2.

An additional aim of this paper is to present a tool that
based on the hardware architecture described above, takes
as input the specifications of a CFG and automatically out-
puts the description of the CFG’s parser in HDL synthesiz-
able source code. In order to achieve this goal, we intended,
during the design of the aforementioned implementation,
to create architecture that is entirely independent from a
specific CFG and is composed by general purpose compo-
nents (memory, multiplexors, logic gates, e.t.c.) that can
dynamically be modified to build a parser for any CFG.
Therefore, the automated hardware generator may use this
design as template, so as to produce a hardware parser for
any CFG. The user of this tool provides the specifications
of the CFG (in a text file) and the maximum input string
length n. It is significant to point out that the architecture
(Figure 2) of the design does not change but based on the
user’s specifications the tool produces the PEMs and adds
them to the properly modified template of the architecture.
The hardware template has been implemented in synthe-
sizable Verilog in the XILINX ISE 7.1i environment [23]
while the automated synthesis tool has been implemented
in VISUAL C++ 6.0 [24].

5 THE COMBINATIONAL CIRCUIT C⊗

A combinational circuit is a generalized gate of m inputs
and n outputs. The circuit is constructed using the binary
equations, describing the relations between the input and
output values. Thus in our case in order to build a combi-
national circuit for operator ⊗, we must first define the in-
puts and outputs of the circuit, as well as the relative binary
equations. Recall from the previous section that operator
⊗ operates over a set of dotted rules and a terminal symbol
of the grammar (H = Q ⊗ (U

⋃
a)). Consequently our

inputs/outputs should be a proper encoding of these sets, as
well as a proper encoding of the input string symbols. With
the term proper we mean a binary encoding, which can de-
scribe at any given moment which dotted rules and which
terminal symbols are contained in the sets respectively. The
data representation as well as the binary equations are pre-
sented in the following subsections.

5.1 Data Representation

The operator ⊗ (H = Q ⊗ (U
⋃

a)) is applied on two
sets of dotted rules (Q, U ) and a terminal symbol (a) and
produces a set of dotted rules (H). We consider that bit
vectors �q and �u control the input bit-vectors correspond-
ing to sets Q and U , while the output bit-vector �h controls
the bits corresponding to set H. Furthermore since our con-
struction follows the definition 5.1, shown in the next sub-
section, we shall use two auxiliary bit vectors �h12 and �hY .
Bit vector �h12 corresponds to the set of dotted rules result-
ing from the function h1

⋃
h2 of definition 5.1, while bit

vector �hY corresponds to set hY . Notice that we use these
two bit vectors just as a reference to the internal signals of
the circuit. In every bit-vector representation, each bit de-
notes the presence (1) or absence (0) of a specific dotted
rule in the set. Since there are |r| dot positions for each
one of the |P | rules, the length of the required bit vector
is of

∑
r∈P (|r|) = |G| bits. All �q, �u, �hY , and �h12 are bit

vectors of that size. It must be defined that each rule r be-
longing to the set P is denoted by the symbolism r i, where
i (0 ≤ i ≤ |P | − 1) is the enumeration of the rule. In order
to denote a dotted rule r, the above symbolism is extended
to rj

i , where j (0 ≤ j ≤ |rhss|) is the position of the dot
in the rule ri. Each bit bk in the bit-vector controls the ex-
istence of a dotted rule rj

i . In order to follow the notation
shown in figure 3, k should be equal to

∑ri−1
r0

(|rhss|)+ j.
Additionally, the set Predict(N) can be represented by a
bit-vector of this size. The latter is called �p and is incorpo-
rated in C⊗ since it’s essential in the calculation of �hY .
Similarly, every terminal symbol is represented in a bit vec-
tor �τ of size |T |, where T is the set of terminal symbols. In
this bit-vector each bit denotes the presence (1) or absence
(0) of a specific symbol. Clearly, every bit-vector �τ , has
only one bit valued (1) as it represents only one terminal
symbol. Consequently, the input string is represented by
the use of n bit-vectors of size |T |. Figure 3 illustrates our
encoding schema.
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Adopting this encoding schema, our proposed circuit takes
as input 2 bit vectors of size |G| + |P | (Q,U ) and one of
|T | (a) and outputs a bit vector of size

(|G| + |P |) (H).

5.2 Building the binary equations

In order to explain the methodology followed to built
the binary equations, it is necessary to firstly present the
definition of the operator ⊗.

Definition 5.1 Given the terminal symbol a and the sets of
dotted rules Q and U , operator ⊗ is defined as follows:

• h1(Q, a) = {A → αaβ•γ|A → α•aβγ ∈ Q and
β

∗−→ ε}

• h2(Q, U) = {A → αEβ•γ|A → α•Eβγ ∈
Q, β

∗−→ ε and E → ζ• ∈ U}

Given a set X of dotted rules, the set hY (X) is defined as
follows:

• hY (X) = {B → δCξ•η|D → κ• ∈ X , C ∈
Predecessors(D),B → δ•Cξη ∈ Predict(N) and
ξ

∗−→ ε}

• Q ⊗ a = h1(Q, a) ∪ hY (h1(Q, a)) and

• Q ⊗ U = h2(Q, U) ∪ hY (h2(Q, U))

Definition 5.2 Given a nonterminal symbol A, the sets
Predecessors(A), Descendants(A) and Predict(A) are de-
fined as follows:

• Predecessors(A) = {B ∈ N |B ∗−→ A}, the intuition

being that starting from the nonterminal B, there is a
sequence of rules that eventually. generate the nonter-
minal A as the only rhss.

• Descendants(A) = {B ∈ N |A ∗−→ B}, this set con-

tains all the nonterminals that can be derived from A.

• Predict(A) = {B → γ • δ ∈ P •|A ∗−→
Bα and γ

∗−→ ε}

• Predict(N) =
⋃

A∈N Predict(A)

It is clearly seen from the above definition that the result of
Q⊗a and Q⊗U is a set of dotted rules, simply constructed
using sets h1, h2 and hY . Therefore the problem is reduced
to that of analyzing the construction of the latter sets, that
will be examined separately.
If there is a dotted rule that belongs to Q and right to the
dot is the terminal symbol a then this dotted rule is added
to set h1(Q, a) but first the dot is moved one position to the
right. If right to a is a string β that can produce the empty
string ε then the dot is moved right to β.
Respectively,if there is a dotted rule that belongs to Q and
right to the dot is a non terminal symbol E, for which there
is a completed dotted rule in U , then the dotted rule be-
longing to Q is added to set h2 but first the dot is moved
one position to the right. If right to E is a string β that can
produce the empty string ε then the dot is moved right to β.
A rule rj

i of the form B → δCξ•η, belonging to set X ,
is added to the set �hY (X) if a) rule rj−1

i belongs to set
Predict(N) b) the symbol C is a Predecessor of D and
c) rule D is completed in set X .If right to C is a string ξ
that can produce the empty string ε then the dot is moved
right to ξ.
The derived binary equations which connect the inputs to
the outputs of the combinational circuit C⊗, are depended
on the given grammar. In the case of C⊗ the output of the
circuit is connected to the necessary inputs through a binary
function described as: �h(i) = �h12(i)+�hY (i), where �h12()
is a function of �q, �u, �τ and �h12, while �hY () is a function
of �h12, �hY and �p. In the two aforementioned functions, the
value of a bit of the output bit-vector depends on previously
calculated bit values of the same vector; of course this fact
does not interfere the combinational nature of the circuit.
Our tool extracts automatically these binary equations for
any given CFG and embeds them in the produced HDL
source of our architecture.
Here, the possible forms the binary functions may have,
will be outlined. Firstly, function �h12() will be examined.
In every dotted rule rj

i , that is not completed, the symbol
right to the dot might be either a terminal or a nontermi-
nal symbol. These are the two case, that are going to be
examined:

• For a dotted rule rj
i of the form A → α•aβ, belonging

to �q in position s− 1, the dotted rule rj+1
i A → αa•β

will be added to �h12 in position s only if the terminal
symbol a is equal to �τ (k), where �τ(k) is the symbol of
the input string to be recognized. Bitwise, the function
�h12() is:

�h12(s) = �q(s − 1) · �τ (k) (1)

This means that if bit �q(s − 1) is 1 (existence of
A → α•aβ) and bit �τ(k) which refers to a is 1, then



the dotted rule A → αa•β should be added to �h12

(set bit �h12(s)).

• Let’s consider the dotted rule rj
i of the form B →

γ•Cδ, belonging to �q in position s − 1. Since C is
a non terminal symbol, it may be the lhss in some
rules. Let these rules be (rc1) : C → ζ, (rc2 ) : C →
η, . . . , (rcl

) : C → ρ. If dotted rules C → ζ•, C →
η• . . . , C → ρ• are controlled by bits in positions
v1, v2, . . . , vl,then rule rj+1

i of the form B → γC•δ
should be added to �h12 in position s only if at least
one of the bits �u(v1), . . . , �u(vl) is set. Bitwise, the
function �h12() is:

�h12(s) = �q(s − 1) · (�u(v1) + . . . + �u(vl)) (2)

This means that if bit �q(s − 1) is 1 (existence of B →
γ•Cδ) and at least one of the bits �u(v1), . . . , �u(vl) (ex-
istence of at least one of C → ζ•, C → η• . . . , C →
ρ•) is 1 then the dotted rule B → γC•δ should be
added to �h12 (set bit �h12(s)). Additionally if C pro-
duces the ε-string, the term �h12(s) should be set to
�h12(s − 1), which means that merely the existence of
B → γ•Cδ is sufficient for the addition of B → γC•δ
in �h12.

Secondly, function �hY ()will be examined. In order a dotted
rule rj

i of the form B → δC•ξη to be added in position s

of �hY , the followings should be satisfied:

1. The dotted rule rj−1
i of the form B → δ•Cξη should

be set in set �p (Predict(N)), i.e. �p(s − 1) = 1

2. For at least one of the symbols belonging to set
Descendant(C) = {D1, . . . , Dd} there should be
a completed dotted rule with this symbol as lhss in
set �h12, i.e. at least one Di → κ• belongs to �h12,
where 1 ≤ i ≤ d.

Lets assume that symbols D1, . . . , Dd are lhss symbols in
π rules, which leads to the fact that there are π completed
dotted rules, controlled by bits w1, . . . , wπ. Then �hY () is
given by the following equation:

�hY (s) = �p(s − 1) · (�h12(w1) + . . . + �h12(wπ)) (3)

This means that if bit �p(s − 1) is 1 (existence of B →
δ•Cξη in Predict(N)) and at least one of the bits �h12(w1),
. . . , �h12(vπ) (existence of Di → κ•) is 1 then the dotted
rule B → γC•δ should be added to �hY (set bit �hY (s)).
Additionally if C produce ε-string �hY (s) should be set
to �hY (s − 1) which means that merely the existence of
B → δ•Cξη is sufficient for the addition of B → δC•ξη
in �hY .
Despite the definition 5.1 that checks if symbols produce
the ε-string after moving the dot, the proposed equations
checks these symbols before moving the dot, without com-
promising the outcome correctness.

An abstract implementation of the aforementioned archi-
tecture is illustrated in figure 4, where only the crucial con-
nections are shown.

Figure 4. Abstract Implementation of the Proposed Archi-
tecture

6 THE SIGNAL PROCESSING EXAMPLE
- EXPERIMENTAL RESULTS

The ECG is a biosignal which is generated by the electrical
activity of the human heart that is transmitted to the body
surface. The ECG is routinely used in clinical practice and
due to the large number of ECGs analyzed in daily basis, it
is worthwhile to automate and accelerate the process to the
maximum extent possible. In Syntactic Pattern Recogni-
tion, the task of recognition is essentially reduced to that of
parsing a linguistic representation of the patterns to be rec-
ognized with a parser that utilizes a certain grammar, called
”pattern grammar” [1]. The pattern grammar describes the
patterns to be recognized in a formal way, and the formu-
lation and parsing of the grammar are always the crucial
subproblems in a pattern recognition application that is to
be tackled by the syntactic approach. In the case of ECGs,
where we have a large number of different morphologies of
the patterns, where added morphologies can be found due
to the noise, and where measurements of the various pa-
rameters have to be performed, powerful grammars capable
of describing syntax as well as well as semantics are needed
as a model for the formulation of a pattern grammar. Due
to their descriptive power attributes grammars are usually
[20] selected and used as the model for the formulation of
a pattern grammar for ECGs. We used the automated syn-
thesis tool to generate a hardware parser for the syntactic
part of the attribute grammar presented in [20] GECG.The
results of the recognition time of the grammar tested for
various lengths of input string and implementations (soft-
ware - hardware) are shown in Figure 5. In [20] the al-
phabet of symbols T = K+, K−, E, Π has been adopted
for encoding the ECG waveforms, where K+ denotes pos-
itives peaks, K− negative peaks, E straight line segments
and Π parabolic segment. Thus an ECG waveform is lin-



Figure 5. Performance evaluation of ECG grammar for dif-
ferent lengths of input string

Figure 6. Performance evaluation of Gchrom parsers for
both types of chromosomes and different lengths of input
string

guistically represented as a sting of symbols from the al-
phabet T . Each symbol is associated with the values of the
corresponding attributes. The CFG GECG consists of 34
syntactic rules with maximum length 7 symbols (terminals
or non-terminals).

A parser for the abovementioned grammar was imple-
mented in hardware using the proposed architecture and in
software as well. The performance in both cases (hard-
ware/software) is measured in clock cycles. Provided that
the technology used for the hardware implementation is the
same for both the FPGA and the microprocessor (if we run
the software implementation on a conventional micropro-
cessor) we can safely use the number of required clock cy-
cles as measurement of the efficiency of the two approaches
(hardware versus software). Additionally, the computa-
tional power of microprocessors used in embedded system,
is comparable to that of an FPGA. Hence the performance
in all implementations is measured using the number of re-
quired clock cycles, so as to purely compare the architec-
ture, regardless of the technology used. The clock cycles in
the software implementations refer to those needed by the
microprocessor to execute the algorithm.
Our implementation was also tested in various grammars
of different sizes, used in real life applications [25], [26].
By the use of the grammar Gchrom presented in [2], both
types of chromosomes can be recognized. The syntactic
rules of this grammar are 18 with maximum length 3, the

Figure 7. Performance Evaluation of G1, G2

non-terminal symbols are 8, the terminal symbols are 5 and
|Gchrom|=32. Furthermore, the performance evaluation for
two CFGs G1 containing 8 rules where |G1|=18, and G2

containing 30 rules where |G2|=55 is presented in Figure
7. G1 and G2 are subsets of Java Programming Language
[27].
Apparently, the performance of our implementation is two
orders of magnitude greater than the software approach, for
all tested grammars. The reason why the performance in
hardware implementation remains the same in cases of G1

and G2 is due to the fact that the propagation delay of cir-
cuit C for both grammars is less than a clock cycle. In cases
where the gate level of circuit C⊗ inputs propagation de-
lay greater than a clock cycle then the overall performance
will decrease by a factor of 16 % (for every extra clock
cycle needed). The small decrease in the performance is
explained by the fact that only the C⊗ part of the whole
architecture is delayed.

7 CONCLUSION - FUTURE WORK

This paper presents an innovative architectural design for
Signal Processing applications based on a Context-Free
Grammar (CFG) parser and an innovative automated syn-
thesis tool that exploits its characteristics for the hardware
implementation of applications that require parsing to en-
hance their performance by integrating syntactic knowl-
edge via CFGs. Our implementation increases the perfor-
mance by a factor of approximately two orders of magni-
tude compared to the pure software implementation, de-
pending on the CFG. Our future work is focused on ex-
tending the proposed architecture so as to handle semantic
rules (Attribute Grammar - AG) as well. This work is a
part of a project1 for developing a platform (based on AGs)
in order to automatically generate special purpose embed-
ded systems. The application area will be that of signal
processing, syntactic pattern recognition, intelligent user
interfaces and Artificial Intelligence (AI) applications us-

1This work is co - funded by the European Social Fund (75%) and
National Resources (25%) - the Program PENED 2003



ing software hardware co-design techniques. The parallel
parser (FPGA) will work in coordination with a RISC mi-
croprocessor that will handle the attribute evaluation pro-
cess following the approach presented in [21]. Alterna-
tively, the whole implementation, both microprocessor and
parser may be mapped on a single FPGA, by the use of a
Soft Processor Core, such as “Microblaze” microproces-
sor that can be embedded in FPGA boards.
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