
HARDWARE IMPLEMENTATION
OF PAN & TOMPKINS QRS DETECTION ALGORITHM1

Christos Pavlatos*, Alexandros Dimopoulos*, G. Manis** and G. Papakonstantinou*

* National Technical University of Athens

Dept. of Electrical and Computer Engineering
Zografou 15773, Athens

Greece

** University of Ioannina
Dept. of Computer Science

P.O. Box 1186, Ioannina 45110
Greece

{pavlatos, alexdem, papakon}@cslab.ntua.gr, manis@cs.uoi.gr

Abstract1: This paper presents a hardware
implementation of the Pan and Tompkins QRS
detection algorithm, described in Verilog HDL
(Hardware Design Language). The generated source
has been simulated for validation, synthesized and
tested on a Xilinx FPGA (Field Programmable Gate
Array) board using the European ST-T database. To
the best of the authors’ knowledge this is the first
attempt for the hardware implementation of the Pan
and Tompkins QRS detection algorithm, in
reconfigurable FPGA boards. The generated
hardware achieves a speed up of 250% compared to
the software implementation. Given that and the
vital importance of a fast and accurate QRS
detection, the hardware implementation seems a
promising approach.

Introduction

The QRS detection algorithm introduced by Pan and
Tompkins [1] is the most widely used and often cited
algorithm for the extraction of QRS complexes from
electrocardiograms. The methodology followed is that
the ECG is passed through a low-pass and a high-pass
filter in order to remove noise from the signal. Then the
filtered signal is passed through derivative, squaring and
window integration phases. Finally, a thresholding
technique is applied and the R-peaks are detected.

This work presents the hardware implementation of
the Pan-Tompkins algorithm. The Verilog [2] hardware
description language has been used. The building blocks
and the actual implementation were designed, tested and
evaluated using the ISE tool available from Xilinx [3].

The comparison of our hardware implementation
with an equivalent software approach showed that the
necessary clock cycles are significantly less for the
hardware implementation.

1 This work is co - funded by the European Social Fund and
particularly the Program “Pened 2003”.

The rest of the paper is structured as follows. The
following section outlines some interesting QRS
detection algorithms and describes in more detail the
one proposed by Pan and Tompkins. The next chapter
presents the general architecture of the proposed system,
while implementation details are given in the next two
chapters. The final section summarizes this work.

QRS Detection Algorithms

Several QRS detection algorithms have been
proposed in the literature [22], [23]. Algorithms [4], [5]
and [6] are based on the amplitude and the first
derivative. In [4] a point is classified as QRS candidate
when three consecutive points of the first derivative
exceed a positive threshold (ascending slope) followed
within the next 100ms by two consecutive points which
exceed a negative threshold (descending slope). Fraden
and Neuman [5] developed a QRS detection scheme
where a threshold is calculated as a fraction of the peak
value of the ECG. Gustafson [6] suggested that a point
is a QRS peak candidate when the first derivative and
the three next derivative values exceeds a threshold and
the next two sample points have positive slope
amplitude products.

Algorithms [7] and [8] are based on the first
derivative only. In [7] the first derivative is calculated
by a given formula and the slope threshold is calculated
as a fraction of the maximum slope for the first
derivative. In [8] the derivative and the derivative of the
next three points should exceed the threshold.

Algorithms [9] and [10] are based on the first and
second derivatives. Balda [9] suggested searching
values exceeding the threshold in a weighted summation
of the first and second derivative. Ahlstrom and
Tompkins in [10] proposed that the absolute values of
the first derivative are smoothed and added with the
absolute values of the second derivative. Two thresholds
are used, a primary and secondary one. A point is
candidate for QRS peak point when the primary

threshold is exceeded and the secondary threshold is
exceeded for the next six consecutive points.

Algorithms [11] and [12] are based on digital filters.
Apart from the above referenced papers, a more detailed
description of those ([4]-[12]) algorithms can be found
in [13].

QRS detection algorithms have been proposed by
our research group based on the length transformation
and on syntactic methods [14], [24], [25], [26], [27],
[28]. These algorithms calculate the length and energy
signals of the ECG and identify peaks using variations
and thresholds in these signals. Relative work which
proposes alternative approaches to QRS detection
includes [15-20].

Pan & Tompkins QRS detection algorithm

One of the most popular QRS detection algorithms,
included in virtually all biomedical signal processing
textbooks, is that introduced by Pan and Tompkins in
[1]. An overview of the algorithm follows. Figure 1
shows a graphical representation of the basic steps of
the algorithm.

Figure 1: A graphical representation of the algorithm.
The signal passes through filtering, derivation, squaring,
and integration phases before thresholds are set and
QRS complexes are detected

In the first step the algorithm passes the signal

through a low pass and a high pass filter in order to
reduce the influence of the muscle noise, the power line
interference, the baseline wander and the T-wave
interference.

The low-pass filter is described by the formula:
)12()6(2)()2()1(2)(��������� nxnxnxnynyny

and the high-pass one is given by:

)32(
32
1

)17()16()(
32
1

)1()(��������� nxnxnxnxnyny

After filtering, the signal is differentiated to provide
the QRS slope information using the following formula:

1
y(n) [2x(n) x(n 1) x(n 3) 2x(n 4)]

8
� � � � � � �

Then the signal is squared point by point making all
data point positive and emphasizing the higher
frequencies.

)()(2 nxny �

After squaring, the algorithm performs sliding
window integration in order to obtain waveform feature
information.

)](...))2(())1(([
1

)(nxNnxNnx
N

ny ��������

where N is the size of the sliding window and depends
on the sampling rate. For a sampling rate of 200
samples/sec the size of the window can be 30 samples.

A temporal location of the QRS is marked from the
rising edge of the integrated waveform.

In the last step two thresholds are adjusted. The
higher of the two thresholds identifies peaks of the
signal. The lower threshold is used when no peak has
been detected by the higher threshold in a certain time
interval. In this case the algorithm has to search back in
time for a lost peak. When a new peak is identified (as a
local maximum – change of direction within a
predefined time interval) then this peak is classified as a
signal peak if it exceeds the high threshold (or the low
threshold if we search back in time for a lost peak) or as
a noise peak otherwise. In order to detect a QRS
complex the integration waveform and the filtered
signals are investigated and different values for the
above thresholds are used.

To be identified as a QRS complex, a peak must be
recognized as a QRS in both integration and filtered
waveform.

The Architecture of the Implementation

The architecture of the implementation is shown in
figure 2 and consists of seven modules and one memory
unit. The module on the left is the control unit which is
responsible for the generation of the control signals and
coordinates all calculations. Each one of the six
modules in the middle is responsible for a different
stage of the algorithm as described in the previous
section. Each one of those modules read values from the
memory, perform the necessary computations and store
the new values back in memory.

M
E
M
O
R
Y

Low Pass Filter

High Pass Filter

Derivative

Squaring

Integration

Decision

Control
Unit

Control Bus Data Bus

Figure 2: An overview of the architecture. The control
unit coordinates the rest of the modules which perform
calculations and interfere with the memory unit.

Even though the implementation of the algorithm in
hardware seems a complicated task, a closer look at the
algorithm reveals some similarities in the calculations
performed by the first five stages since the filters, the
differentiation and the integration units compute

difference equations. The general formula of these
stages is:

�
�

����
m

i
iiii lnybknxany

1

)()()(

 Thus, those modules can be implemented based on
a common model, which loads values from the memory,
multiplies them with the appropriate factors, adds them,
and stores the result back in memory.

Since the implementation philosophy for all units is

the same, the common architecture is shown in figure 3.

Register Loader

Control Unit
Address Loader Resister 1

Resister 2

Resister 3

Resister n

Adder

x

y

Memory
address

clock

R_W

out

in

Figure 3: The architecture of the stages. Values are
loaded from memory, multiplied with proper factors,
added and stored back in memory

Without loss of generality we will describe the

implementation of the low-pass filter. The low-pass
filter is described by the formula:

y(n)=2y(n-1)-y(n-2)+x(n)-2x(n-6)+x(n-12)

Resister 1

Resister 2

Resister 3

Resister 4

Adder

Resister 5

ld5…ld1

* factor

* factor

* factor

from memory add

* factor

* factor

to memory

Figure 4: Register loader, registers and adder for the
low-pass equation unit

A memory unit is used which stores, in the first half,
the values of x. The second half is used for the produced
values of y. The control unit is responsible for the
creation of the necessary control signals which enable
the basic units of the filter and synchronize the
calculations. For example when the terms 2y(n-1), -y(n-
2), x(n), -2x(n-6), and x(n-12) are available the control
unit generates a control signal to enable the adder and
produce y(n). The address loader is a complicated
circuit which consists mainly from multiplexers and
adders. It produces the addresses which store the values
necessary to calculate y(n). For the low-pass filter these

values are y(n-1), y(n-2), x(n), 2x(n-6), and x(n-12). In
a similar way the register loader consists of multiplexers
and arithmetic operations circuits. Under the
instructions of the control unit, the loader multiplies
with the appropriate factors the values read from the
memory and loads them to the registers. Finally an
adder adds the values of the registers and sends y(n) to
the memory.

Table 1: Signals for the circuit of figure 4

time value ld5…ld1 add
t 2y(n-1) 00001 0

t+1 y(n-2) 00010 0
t+2 x(n) 00100 0
t+3 2x(n-6) 01000 0
t+4 x(n-12) 10000 0
t+5 00000 1

Let us select and present in more detail a subset of

the whole circuit, the register loader, the registers and
the adder. The architecture is shown in figure 4. The
memory, under the supervision of the control unit,
produces the required values which are the input for the
circuit of figure 4. When one of these values is
available, the control unit enables accordingly the ld
signals. Suppose that the available value is y(n-1). Then
the ld1 signal will be the only ld signal which will be
set. Register 1 will load the value of y(n-1) multiplied
by 2. When all registers have been loaded then the add
signal will produce y(n). The whole synchronization
mechanism is shown in table 1.

Figure 5: Output of each stage. (a) Original signal, (b)
Output of bandpass (highpass and lowpass) filter, (c)
Output of derivation, (d) Output of squaring, (e) Output
of integration, (f) Output pulse.

After the execution of the first five stages the stage

of decision takes place. During this step, peaks are
detected in the data generated by the previous stages. In
this phase the computed values of the thresholds are
taken into account in order to identify the QRS peak in
each RR interval. The thresholds and the duration of the
expected RR interval are dynamically adjusting with the
shape of the signal. Once a peak is detected the system
generates a pulse.

The results of the implemented hardware system
are presented in figure 5 where the output of each stage
is shown for 1000 samples of the European ST-T
database.

System Evaluation

The proposed hardware implementation achieves a
speed up of 250% compared to a software
implementation. The software implementation uses a
conventional Risc microprocessor. Provided that the
technology used for the hardware implementation is the
same with the one used for the microprocessor we can
safely claim that the clock frequency for both
implementations may be the same. Consequently the
performance in all implementations is measured in
clock cycles. Measurements have been taken for various
numbers of samples. In figure 6 the performance
evaluation is shown for 1000, 5000, 10000, 20000 and
30000 samples.

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

clock
cycles

1.000 5.000 10.000 20.000 30.000
number of samples

software hardware

Figure 6: Performance evaluation of the implemented
system for various numbers of samples.

In figure 6, is clearly shown that the hardware
implementation is faster. The speed-up factor is close to
2.5 and gradually increases as the number of samples
increases. This augmentation of the speed-up factor is
shown in figure 7.

235

240

245

250

255

260

265

270

0 10.000 20.000 30.000

number of samples

sp
ee

d
up

 %

Figure 7: The fluctuation of the speed-up factor
according to the number of samples

Conclusions and future work

In this paper we propose a hardware

implementation of the Pan and Tompkins QRS
detection algorithm based on a Xilinx FPGA board,
accelerating the performance by a factor of
approximately 2.5 compared to the software approach.

Our current research is focused on enhancing the
performance of the presented architecture, by using
pipelining techniques. Pipelining [21] is an
implementation technique in which multiple tasks are
overlapped in execution. The execution of each stage
may not occur sequentially one after other but there may
be an overlap in execution. In our current
implementation every stage processes the entire sample
and then can the next stage begin. However, the samples
that have already been processed by a stage may be
processed by the next without waiting all the samples to
be processed by the first.

References

[1] PAN J., and TOMPKINS W. J. (1985): ‘A Real-

Time QRS Detection Algorithm”, IEEE Trans.
Biomed. Eng., 32, pp. 230-236

[2] PALNITKAR, S. : ‘Verilog HDL, A guide to digital
design and synthesis’, PRENTICE HALL, Second
Edition

[3] XILINX, Internet site address:
http://www.xilinx.com

[4] MAHOUDEAUX P. M. et al. (1981): ‘Simple
Microprocessor-based System for On-line ECG
Analysis’, Med. Biolog. Eng. Comput., 19, pp. 497-
500

[5] FRADEN J., and NEUMAN M. R. (1980): ‘QRS
Wave Detection’, Med. Biolog. Eng. Comput., 18,
pp. 125-132

[6] GUSTAFSON D. et al. (1977): ‘Automated VCG
Interpretation Studies Using Signal Analysis
Techniques’, R-104 Charles Stark Draper Lab.,
Cambridge, MA

[7] MENRAD A. et al. (1981): ‘Dual Microprocessor
System for Cardiovascular Data Acquisition,

Processing and Recording’, Proc. of 1981 Int. Conf.
Industrial Elect. Contr. Instrument., pp. 64-69

[8] HOLSINGER W. P. et al. (1971): ‘A QRS Pre-
processor Based on Digital Differentiation’, IEEE
Trans. Biomed. Eng., 18, pp. 212-217

[9] BALDA R. A. et al. (1977): ‘The HP ECG analysis
program’ in VANBEMNEL J. H. and WILLEMS J.
L. (Ed): ‘Trends in Computer-Process Electro-
cardiograms’ , (North Holland), pp. 197-205

[10]AHLSTROM M. L. and TOMPKINS W. J. (1983):
‘Automated High Speed Analysis of Holter Tapes
with Microcomputers’, IEEE Trans. Biomed. Eng.,
30, pp. 651-657

[11]ENGELSE W. A. and ZEELENBERG C. (1979):
‘A Single Scan Algorithm for QRS Detection and
Feature Extraction’, Proc. of IEEE Comput. Card.,
Long Beach, pp. 37-42

[12]OKADA M. (1979): ‘A Digital Filter for the QRS
detection complex’, IEEE Trans. Biomed. Eng., 26,
pp. 700-703

[13]FRIESEN G. M., JANNETT T. C., JADALLAH M.
A., YATES S. L., QUINT S. R. and NAGLE H. T.
(1990): ‘A Comparison of the Noise Sensitivity of
Nine QRS Detection Algorithms’, IEEE Trans.
Biomed. Eng., 37, pp. 85-98

[14] PAPAKONSTANTINOU G., SKORDALAKIS E.
and GRITZALI F. (1986) ‘An attribute grammar for
QRS detection’, Pattern Recognition, 19 n.4, p.297-
303,

[15]NYGARDS M. and SORNMO L. (1981): ‘A QRS
Delineation Algorithm with Low Sensitivity to
Noise and Morphology Changes’, Proc of Comput.
Cardiol., pp. 346-350

[16 MEAD C. N. et al. (1981): ‘A Frequency Domain-
Based QRS Classification Algorithm’, Proc of
Comput. Cardiol., pp. 351-354

[17]BREKELMANS F. E. M. and DE VAAL C. D. R.
(1981): ‘A QRS Detection Scheme for Multichannel
ECG Devices, Proc of Comput. Cardiol., pp. 437-
440

[18]BORJESSON P. O. et al. (1982): ‘Adaptive QRS
Detection Based on Maximum a Posteriori
Estimation’, IEEE Trans. Biomed. Eng., 29, pp. 341-
351

[19]THAKOR N. V., WEBSTER J. G. and TOMPKINS
W. J. (1983): ‘Optimal QRS Detection’, Med. Biol.
Eng. Comput., 21, pp. 343-350

[20]SORNMO L., PAHLM O. and NYGARDS M.
(1985): ‘Adaptive QRS Detection: A Study of
Performance’, IEEE Trans. Biomed. Eng., 32, pp.
392-401

[21]PATTERSON D., HENESSEY J. (1998):
‘Computer Organization and Design: The
Hardware/Software Interface’, MK PUBLISHERS

[22]RANGAYYAN R.: ‘Biomedical Signal Analysis, A
Case Study approach’, IEEE Press Series in
Biomedical Engineering

[23]KOHLER B., HENNING C. and ORGLMEISTER
R.,(2002):‘The principles of software QRS
detection’, IEEE Engineering in Medicine and
Biology, pp.42-57

[24]GRITZALI F. ‘Towards a generalized scheme for
QRS detection in ECG waveforms’, Signal
Processing, 15,pp. 183-192, 1988

[25]GRITZALI F., FRAGAKIS G. and
PAPAKONSTANTINOU G., ‘A comparison of the
length and energy transformations for the QRS
detection’, Proc. 9th Annual conf. IEEE Engineering
in Med. And Biology Society. Boston, 1987

[26]PAPAKONSTANTINOU G and GRITZALI
F.(1981) :‘Syntactic filtering of ECG waveforms’,
Compt. Biomed. Res., 14, pp.158-167

[27]PAPAKONSTANTINOU G, SKOLDALAKIS E.
and GRITZALI F.(1986):‘An attribute grammar for
QRS detection’ , Pattern Recognit., 19, pp. 297-303

