A Quantum Algorithm for Finding Minimum Exclusive-Or Expressions.
PRELIMINARY VERSION

M. Sampson, D. Voudouris, G. Papakonstantinou
Dept of Electrical and Computer Engineering
Division of Computer Science
Computing Systems Laboratory
National Technical University of Athens
157 80, Zografou Campus, Greece

Abstract

This paper presents a quantum algorithm for minimiz-
ing both Exlusive-or Sum of Complex Terms (ESCT) and
Exlusive-or Sum of Products (ESOP) expressions. The pro-
posed algorithm, QMin, takes advantage of the inherrent
massive parallelism of quantum circuits. The ESCT expres-
sions produced by QMin are presented in the related bibli-
ography as an attractive architecture for implementing re-
versible and quantum circuits.

1 Introduction

Since the early 1980’s Quantum Mechanics has begun
to establish itself in the field of Computer Science. The
promising aspects of Quantum Mechanics paved the way
for an entirely novell approach of the computational model
that is completely dominant nowadays. Even though the re-
alization of quantum computers is in its early stages, the
scientific community is already building up the software
and the algorithms that will be used in such devices in the
near future. The three algorithms that constitute, so far, the
foundations of quantum algorithms are the Shor’s [1], the
Grover’s [2] and the Quantum Fourier Transformation [3]
algorithms. In particular the Shor’s algorithm can find the
periodicity of a function in polynomial time, providing ex-
ponential speedup which, in principle, renders RSA and re-
lated cryptography algorithms obsolete. Grover’s algorithm
is the optimal quantum searching algorithm even though
it doesn’t achieve the spectacular speedup of the previous
one. Finally, the quantum Fourier Transform is actually
the implementation of the Discrete Fourier Transform as a
quantum circuit and has many applications in quantum al-
gorithms as it provides the theoretical basis to the phase es-
timation procedure and is a key feature for many important

quantum algorithms.

Another interesting problem which is intractable for
a conventional computer is the mapping of an arbitrary
switching function to a cellular architecture in an optimal
way. Such architectures are the Maitra Cellular Architec-
ture and the ESOP architecture which is in fact a subcase
of the first one. Lately, the Maitra Cellular Architecture has
attracted much scientific interest because it has been proved
to be reversible and thus it may be useful for designing
quantum circuits [4]. The problem of mapping an arbitrary
function, in an optimal way, to such architectures, has been
extensively researched in the past and non-heuristic solu-
tions have been found for a small number of input variables
[5,6,7,8, 19, 18, 12]. Other heuristic approaches have been
presented for more input variables [4, 9, 10, 18, 12, 17]. The
above algorithms lead to optimal or near optimal circuits as
far as the size is concerned, thus reducing the production
cost of these circuits.

In this work, a quantum algorithm which deals with both
the ESCT and ESOP minimization problem is presented.
The proposed algorithm utilizes the quantum superposition
to efficiently address these interesting problems. The pro-
duced ESCT expressions can be used for quantum circuit
synthesis, since the underlying Maitra Cascades architec-
ture can be directly mapped to quantum circuits. As it
will be presented later, the proposed algorithm can also be
used for ESOP (Exclusive-or sum of products) minimiza-
tion, since an ESOP expression is a subcase of an ESCT
expression.

In [15] a quantum algorithm for finding FPRM (Fixed
Polarity Reed Muller) expressions with number of terms
less than a specified threshold is described. It proposes
the construction of a specialized quantum operator (oracle)
which evaluates FPRM expressions. It then uses this ora-
cle in conjunction with Grover’s algorithm [2] in order to
find the FPRM expressions with the desired characteristics.

O(N”Z)
A
| easured XOR
n expression
E{ Walsh- Inversion | —| Inversion TH \nvers\on
1 Hadamard about mean — about mean = abou\ mean
o of el
W —- r P LU r P
o] a - a - a
r . c ». c ». c %
K . | “h . | %
s L3 e . e * e
—_ e —
p
5 G-St] G5t . G-St —
Step -Ste (&1
g Threshold L E
Problem Comparator
Specific = (Oracle output
Gircuit producer)
\%de

ESOP or ESCT Minimization
Circuit (Our approach)

FPRM Minimization Circuit {Li,
Thornton, Perkowski approach)

Expression

FPRM GCost
Estimator

Processor Counter

ibornb
function)

Expression Estimator (n-1
variables) for n>2 or LUT
for n=2 (ESCT) or n=1
(ESOP) as seen below

= > e e
%, {>v I[: %, i D D>
%y %y X %,
L% > [X, 10> X, 4%,
0>
[XXX ! (xor) X X,
ey ESOP LUT for functions
ESCT LUT for functions of 2 input variables of 1 input variable

Figure 1. Algorithm hierarchy

Our proposed algorithm uses the same principle as this pre-
vious one but instead proposes a new oracle which evalu-
ates either ESCT or ESOP expressions (which are a sub-
set of ESCT expressions and a superset of FPRM expres-
sions).Our implemented oracle has been simulated success-
fully, using the Fraunhofer Quantum Computing Simulator
[14].

To the best of the authors’ knowledge, this is the first
quantum algorithm that addresses the interesting problems
of ESCT and ESOP minimization.

2 Theoretical Background
2.1 Definitions

In this section we provide some background definitions.

Definition 1 A complex Maitra term [11](complex term or
Maitra term for simplicity) is recursively defined as follows:

1. Constant 0 (1) Boolean function is a Maitra term.
2. Aliteral is a Maitra term.

3. If M; is a Maitra term, a is a literal, and G is an arbi-
trary two-variable Boolean function (Maitra cell), then
M1 = G(a, M;) is a Maitra term.

Additionally, it is required that each variable appears in each
Maitra term only once.

As it was presented in [6], every complex term can be
written as: [}, (zn,y), where y is a complex term, not de-
pending on z,, and F,(z,,y) denotes a boolean function
between x,,,y. In particular, F,(z,,y) can be one of the
following: Fy,(xn,y) = {F1(zn,y) = p +y, Fa(xn, y) =
Tn + Y, Fg(l’", y) = TnY, F4(xn7 y) = ITnyY, F5(xn7 y) =
Tn ®Y, Fs(zn,y) = y}. Hence,p = 1,2, ..., 6.

A wave cascade expression can be directly mapped to
a special celllular architecture, called the reversible wave
cascade cellular architecture.

Definition 2 An ESCT (Exclusive-or Sum of Complex
Terms) expression (some times also called reversible wave
cascade or Maitra expression) for a switching function is
an exlusive-OR sum of complex terms:

m

Q = Z@MU

where M; are complex terms and m is their number inside
the expression. The same variable ordering is used for every
M;. The size, s(Q), of the expression Q is defined as the
number of complex terms inside the expression.

In the case where the Maitra cells of a complex term do not
implement the logical OR and XOR functions, the complex
term is also called a product term and an ESCT expression
composed by product terms is reduced to an ESOP expres-
sion.

Definition 3 A minimal (or exact) ESCT (ESOP) expres-
sion of a switching function f(x1,...,zy) of n variables is
defined as the one which has fewer number of terms com-
paring to every other ESCT (or ESOP) expression for this
function.

Definition 4 The ESCT (ESOP) weight w(f) (or simply
weight) of a switching function f(x1,...,2,) of n vari-
ables is defined as the number of complex terms (product
terms) in a minimal ESCT (ESOP) expression of f.

Every two-variable switching function has ESCT weight
equal to 1 [11].

Definition 5 The subfunctions f1, fo, fo of a switching
function f(x) (x is the vector of its variables) are defined as
fl = f(zla'rQa ceey Ip—1, 1)! fO = f(x17x27 cee 7xn—170)1
fo = f1 @ fo, regarding variable x,,.

Definition 6 The minterm representation (MT) of a switch-
ing function [with n variables is a bitvector of size 2"
where the i-th bit is 1 if the i-th minterm of f is 1.

For the rest of this paper, the minterm representation of
a switching function will be enclosed in brackets. It is very
easy to prove that the upper half of the MT representation
of a switching function corresponds to its f; subfunction,
while the lower half corresponds to its f subfunction.

2.2 ESOP and ESCT Minimization

The following theorems provide the necessary theoreti-
cal background in order to produce minimal expressions for
an arbitrary switching function of n input variables.

Theorem 1 Each minimal ESCT expression of a switching
function f can always be written in one of the following
compact forms:

Lst: f = Fy(an,y) (1)
(with one subfunction constant, ie. 0 or 1)
OR
2nd : f = Fp(an,y) & Fy(zy, 2) 2)
OR

3rd: f = Fy(2n,y) ® Fy(zn,2) ® Fr(xn,9) ()

where the valid combinations of cell indices and their
corresponding inputs have been presented in [6].
The proof of this theorem is presented in [6].

In [12, 19] it was proved that we can find a minimal
ESOP expression for a function f of n input variables, by
merging (xor summing) every possible function of n — 1
variables with its subfunctions fy, f;. This is because f
can be written as: f(x1,...,2,) = @, V1 ® x,Vo ® (4, &
Tp)Vs == 2, (V1 ® V3) ® 2, (Vo ® V3) = & fo @ @ f1.
Hence, Vi = fo® V3, Vo = f1 @ V3 and w(f) =

In the following theorem it is proved that an almost iden-
tical algorithm can be used for finding minimal ESCT ex-
pressions for an arbitrary switching function.

Theorem 2 Every minimal ESCT expression for f of n
variables can be found by merging every possible function
of n — 1 variables with subfunctions fy, f1 of f.

Proof. A minimal ESCT expression of f will be in one
of the three compact forms of Theorem 1.

e Ifitis in the third compact form then according to The-
orem 1 and the proof in [8], there must be at least an-
other minimal ESCT expression of f in the following
form: F5(z,Y)®Fy(x, Z)®Fs(x, G) = 2Y dTZBG,
where Y, Z, G are minimal ESCT expressions of func-
tions y, 2, g. It, also, holds: f1 =y ® g, fo = 2D g.
We obviously don’t know vy, 2z, g functions, but we do
know the fy, f1 subfunctions. In order to find y, z, g
functions, we can merge every possible g function (in
essence we check every possible g function to find the
appropriate one(s)) with fy, f1 in order to produce y
and z functions (the same process as in ESOP min-
imization). The minimal expression will be: f =
Y ®xZ & G, where Y, Z are minimal ESCT expres-
sions of functions y = g f1, z = g® fo. The minimal
ESCT expressions of f are produced by those combi-
nations of y, z, g that give the least number of complex
terms and w(f) = w(fo ® g) + w(fi & g) +w(g).

e If it is in the second form then there must be at least
another minimal ESCT expression of f in one of the
forms corresponding to the Shannon or Davio expan-
sions: f =Zfo®afrorf = fobafeor f=f1BTfe
[8]. We can find these forms by xor summing fo, f1
with the constant 0 function (Shannon expansion), f;
subfunction (negative Davio expansion) or f subfunc-
tion (positive Davio expansion). The minimal ESCT
expressions will be: f = z(f1 ®0) © z(fo $0)© 0
or f = zxz(fi® fi)dz(fo® fr) ® fror f =
z(f1 @ fo) ®Z(fo ® fo) @ fo.

e If it is in the first form then one of fy, f1, fo will be
constant (0 or 1). The appropriate minimal ESCT ex-
pression can easily be found by xor summing constant
function 0 with fy, f1. For instance if fo = 1 then the
minimal ESCT expression will be: f = z(fo @ 0) ®
Z(fi ®0) @0 and since fo = 1 < fo = fi, it holds
f=xfi®dzfi=2® fi = F5(z, f1).

It is obvious that in every possible case (both for ESCT
and ESOP), we can merge any possible g function (includ-
ing the constant 0 function) with fj, f1 and we will acquire
at least one minimal ESCT (ESOP) expression for function
f in the form: z(f1 @ g) ® Z(fo ® g) ® g. The only dif-
ference is that in the case of ESCT expressions we must
stop the recursion at the 2-variable level (since every non
constant 2-variable function has ESCT weight equal to 1),
instead of the 1-variable level in the ESOP case. Moreover,

the constant function 1 does not add to the ESCT weight,
although it does so in the ESOP case [8].

2.3 Grover’s Algorithm

In [2], L. Grover presented a quantum algorithm for find-
ing a specific element in an unsorted database in O(\ﬂN)
steps (IV is the number of elements in the database). This
result is much better than its conventional analogue (O(V)).
The initial state of the database is the superposition of
all possible N elements. This is accomplished using the
Walsh-Hadamard gate. In each step, Grover’s algorithm in-
creases the amplitude of the marked states (the states of the
elements we are searching for) and decreases those of the
unmarked ones by O(1/+/(N)). After O(1/(N)) steps the
probability of the marked states will be almost 1 and those
of the unmarked states will be almost 0. At that point, we
perform a measurement and find one of the elements we are
searching for. The actual behavior of Grover’s algorithm
depends on a specific quantum operator called the Oracle.
This operator decides which states are the marked ones and
which are not.

9 n-1 m a
= LT
a
bomb function)
If,> n-1 m b
[553 Fan o
f,(xor)bomb & |Comparator
If,> n1 m .
B a o
c
xonbomb
q
Expression Estimator L

Figure 2. QMin-Oracle Circuit

In [15] Li, Thornton and Perkowski presented a quantum
algorithm based on Grover’s, that could find FPRM expres-
sions for a specific function with number of terms less than
a specific threshold. Their algorithm is actually Grover’s al-
gorithm using a special Oracle operator. In particular, this
operator is composed of three distinct parts: the FPRM pro-
cessor, the cost counter and the comparator (Fig. 1). The
FPRM processor calculates all possible FPRM expressions
for a specific function. The cost counter determines the size
of each expression (number of coefficients in FPRM expres-
sion). Finally, the comparator checks if the determined size
is less or equal to the specified threshold and outputs 1, oth-
erwise 0. This number is the output of the oracle operator.
In general, they proposed a generic platform for the devel-
opment of quantum algorithms that is suitable for solving
several intractable problems. All you have to do is to pro-
vide a problem-specific circuit to evaluate the cost function
(cost counter).

In this work, we propose a different oracle implemen-
tation in order to find minimal ESOP or ESCT expressions
for an arbitrary switching function. In our case, the oracle is
modified in the same principle as before. It is composed of
two distinct parts: The Expression-Estimator and the Com-
parator (Fig. 2). The first part calculates all possible ESOP
or ESCT expressions and determines the number of terms
(complex or product) in each one (cost function). The Com-
parator is the same as in [15]. Our proposed algorithm also
detects the expressions that have number of terms (product
or complex) less or equal to a certain threshold. In Fig. 1,
the aforementioned generic framework and its variations for
the FPRM and the ESOP/ESCT expressions are presented.

3 Algorithms

The proposed quantum algorithm (QMin) is based on
Grover’s algorithm [2]. We propose a special oracle (QMin-
Oracle) as input for Grover’s algorithm, which is based on
Theorem 2.

In a conventional ESCT (or ESOP) minimization algo-
rithm like XMin6 [8], the main computational overhead
comes from the for-loop where the (n — 1)-input variable
function is merged with f’s subfunctions in order to pro-
duce ESOP or ESCT expressions for the input function.
From Theorem 2 it is obvious that some of them will be
minimal. In QMin-Oracle all the iterations of this previ-
ous loop are performed in one step, utilizing the quantum
superposition, inside Grover’s oracle. This, enables a sig-
nificant speedup, allowing to use the same brute-force tech-
nique as with XMin without developing any further mini-
mization theory.

In contrast to the classical XMin algorithm, the merging
process in QMin is performed using any possible (n — 1)
variable function (since all these functions can be repre-
sented by a quantum register of n — 1 gbits in superposi-
tion). Furthermore, in QMin, it is sufficient to use only one
pair of subfunctions (here fy, f1) since we merge with every
possible (n — 1) variable function (Theorem 2).

QMin stages are presented in Fig. 1. As it can be ob-
served QMin is essentially Grover’s algorithm with modi-
fied oracle.

Every oracle for Grover’s algorithm should return 1 or 0
depending on the input. If the input is a marked state (an
input that satisfies the search criteria) then it should return
1 otherwise it should return 0. QMin-Oracle receives two
inputs, our input function and a threshold. It returns 1 if
the produced expression has number of terms (product or
complex) less or equal to Threshold. Otherwise it returns O.

The QMin-Oracle is composed of two distinct compo-
nents. The first one called the Expr-Estimator is the one
that implements Theorem 2 and produces ESOP or ESCT
expressions for our input function. The second one is the

Comparator which compares the number of terms (com-
plex or product) of every produced expression with a given
Threshold. It returns 1 if this number is less or equal to
Threshold and O otherwise.

The Expr-Estimator component can be seen in Fig. 2.
It is composed of three main buses. The first is initialized
by the Walsh-Hadamard gates of Fig. 1 (they reside out-
side the Oracle operator) and stands for the g function of
Theorem 2. The second and the third one are initialized
as the minterm representation of subfunctions f; and fy of
our input function, respectively. The CNOT gates produce
the bitwise XOR sum of the g function (first bus) with f;
and fo, respectively, thus producing the g & f1 and g @ fo
functions of Theorem 2.

The LUT operators that follow, can be considered as
black boxes which produce the weight of their input func-
tion. One way to implement them, is to use the Expr-
Estimator circuit recursively forn — 1,n —2,..., 2,1 vari-
ables.

If QMin is designed to produce ESCT expressions, then
our recursion stops at the 2-variable level, and the corre-
sponding LUT circuit used can be seen at the bottom of Fig.
1 (leftmost part). This circuit implements the Boolean func-
tion (331 +Zo+ 23+ 33‘4) @® x1x903T4, Where 1, xo, X3, T4
are the bits corresponding to the MT formulation of the in-
put function (not to be confused with the input variables of
the function). It results to O when all its inputs are either O
or 1 (constant functions have ESCT weight equal to 0) and
1 in all other cases. Obviously, its result corresponds to the
weight of the function with MT formulation composed of
bits x1, x3, x3, 4.

If QMin is designed to produce ESOP expressions, then
the recursion stops at the 1-variable level and the LUT cir-
cuit appears at the bottom of Fig. 1 (rightmost part). It
implements function x; + 9, where 1, zo are the bits cor-
responding to the MT formulation of the input function.
This results to O only if x1, 22 are both 0 and 1 in all other
cases and corresponds, accordingly, to the weight of the in-
put function.

At this point the number of terms for each possible ESCT
or ESOP expression of functions g, g & f1,9 @ fo is calcu-
lated. According to Theorem 2, the number of terms in an
expression of our initial function is their sum. Therefore, we
use a quantum adder to perform this task. Quantum adders
have been presented in the related bibliography [13, 15] and
any of these can be used.

The other component of QMin-Oracle is the Comparator.
The Comparator we use, has been presented in [15]. A 2-
qubit Comparator can be seen in Fig. 3. It should be noted
that the Comparator is used only once and not within the
recursion performed by the Expression-Estimator.

As an example we present the QMIN-Oracle circuit for
finding ESCT expressions with number of complex terms

I I
®

S

F | 0

Figure 3. A 2-qubit Comparator, comparing

sos1 to tot;, implementing function: (s; @
t1)t1 ® (s1 @ t1)(s0 @ to)to

N

|‘°:> 2

S AR

= %

I“):) 2

S M

0> 2

= C1 subcircuit ngh‘

|‘0:> 4 (SP omparator
st il i =
[

Figure 4. Four Variable Oracle Circuit

less or equal than a specified Threshold for switching func-
tions of 4-input variables. This circuit can be seen in Fig.
4. It is noted that the QMin-Oracle circuit has been succes-
fully simulated using the Fraunhofer Quantum Computing
Simulator [14] for the ESOP case and for functions of up to
2-input variables.

It must be noted that the g output of the QMin Oracle op-
erator in Fig. 2 is the input to the Comparator operator. The
a, b, c outputs correspond to the g, g B f1, g @ fo functions
of Theorem 2 and are considered outputs of our quantum
minimization circuit (Fig. 1).

The actual quantum minimization algorithm is, of
course, Grover’s algorithm, using the previously described
QMin Oracle circuit as the specialized oracle operator. It
takes as input (Fig. 1) an arbitrary switching function f
and a Threshold. Its outputs are the a, b, ¢, ¢ outputs of the
QMin Oracle circuit. At the end of the execution, those ex-
pressions of f that have number of terms (either complex
or product, depending on the type of expressions we are
searching for) less or equal to the Threshold, will have prob-

ability almost 1 (marked states), while all the others will
have probability almost 0 (unmarked states). Upon mea-
suring one of its outputs (for instance the a output), all the
outputs will collapse to those corresponding to one of the
marked states. The weight of the output expression will be
given by ¢, while the actual expression can be reconstructed
from outputs a, b, c according to Theorem 2.

4 Conclusions and future work

In this work a quantum algorithm (QMin) for producing
ESOP or ESCT expressions with number of terms (com-
plex or product) less than a specified threshold is presented.
QMin is a quantum algorithm that receives as input an arbi-
trary switching function and detects its ESOP or ESCT ex-
pressions with number of terms (complex or product) less
than a specified threshold. It is obvious that by repeativ-
elly executing QMin and updating the Threshold as nec-
essary we can find minimal expressions for a specific func-
tion. An initial estimation for the Threshold can be obtained
from conventional heuristic minimizers such as exorcism-
mv?2 [16] or QuiXor [18] (ESOP case) or EMinl [7] (ESCT
case).

Future work will focus on extending the algorithm in
order to address the multi-output switching function min-
imization problem. Another interesting aspect would be to
find a more efficient algorithm with complexity less than
exponential.

5 Acknowledgments

This work has been funded by the project PENED 2003.
This project is part of the OPERATIONAL PROGRAMME
“COMPETITIVENESS” and is co-funded by the European
Social Fund (75%) and National Resources (25%).

References

[1] P. W. Shor, ”Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum com-
puter”, STAM J. Computing 26, pp. 1484-1509 (1997).

[2] L.K. Grover, ”A fast quantum mechanical algorithm for
database search”, Proc. 28th Ann. ACM Symp. on The-
ory of Comput., 212219, 1996.

[3] D.E. Knuth ”The Art of Computer Programming”, Vol.
2: Seminumerical Algorithms, Second ed., Addison-
Wesley, 1981.

[4] A. Mishchenko, M. Perkowski, “Logic Synthesis of
Reversible Wave Cascades”,International Workshop on
Logic And Synthesis 2002, New Orleans, Louisiana,
June 4-7, 2002.

[5] G. Papakonstantinou, ’Synthesis of cutpoint cellular ar-
rays with exclusive-OR collector row”, Electronic Let-
ters, 13(1977).

[6] D. Voudouris, S. Stergiou, G. Papakonstantinou “Mini-
mization of reversible wave cascades”, IEICE Trans. on
Fund., Vol E88-A, No. 4, pp. 1015-1023, 2005/04.

[7]1 D. Voudouris, G. Papakonstantinou “Maitra Cascade
Minimization”, 6th IWSBP, 2005, Freiberg (Sachsen),
Germany.

[8] D. Voudouris, M. Sampson, G. Papakonstantinou "Ex-
act ESCT Minimization for functions of up to six input
variables”, submitted for publication to Integration, The
VLSI Journal, Elsevier (under minor revision).

[9] D. Voudouris, M. Kalathas, G. Papakonstantinou "De-
composition of Multi-output Boolean Functions”, HER-
CMA 2005, Athens, Hellas.

[10] G. Lee “Logic synthesis for celullar architecture
FPGA using BDD”, ASP-DAC 97, pp 253-258 Jan 1997.

[11] K.K. Maitra ”Cascaded switching networks of two-
input flexible cells” IRE Trans. Electron. Comput., pp,
136-143, 1962.

[12] A. Gaidukov, ”Algorithm to derive minimum esop for
6variable function”, Sth IWSBP, September 2002.

[13] Phil Gossett, “Quantum Carry Save Arithmetic”,
quant-ph/980861 (1998)

[14] http://www.qc.fraunhofer.de/

[15] Lun Li, Mitch Thornton and Marek Perkowski A
Quantum CAD Accelerator based on Grover’s algorithm
for finding the minimum Fixed Polarity Reed-Muller
form”, ISMVL’06, Proc. of the ISMVL’ 06 vol. 00, pp.
33- 33, 17-20 May 2006.

[16] Song, N., Perkowski, M.A., "EXORCISM-MV-2:
minimization of exclusive sum of products expressions
for multiple-valued input incompletely specified func-
tions”, ISMVL1993, Proc. of ISMVL93, pp.132-137,
24-27 May 1993.

[17] A. Mishchenko, M. Perkowski “Fast Heuristic Min-
imization of Exclusive-Sums-of-Products”, 5th Interna-
tional Reed-Muller Workshop, Starkville, Mississippi,
August, 2001

[18] Stergiou S., Voudouris D., Papakonstantinou G.,
“Multiple-Value Exclusive-Or Sum-Of-Products Mini-
mization Algorithms”, IEICE Trans. on Fund., 2004, vol
87, part 5, pp. 1226-1234.

[19] T. Hirayama, Y. Nishitani, T. Sato ”A Faster Algo-
rithm of Minimizing AND-EXOR Expressions”, IEICE
Trans. on Fund., Vol E85-A, No. 12, pp. 2708-2714,
2002/12.

