
1

A Quantum Algorithm for Finding Minimum
Exclusive-Or Expressions for Multi-Output
Incompletely Specified Boolean Functions.

PRELIMINARY VERSION
M. Sampson (sampson@cslab.ntua.gr), D. Voudouris (dvoudour@cslab.ntua.gr), G. Papakonstantinou

(papakon@cslab.ntua.gr)
Dept of Electrical and Computer Engineering

Division of Computer Science
Computing Systems Laboratory

National Technical University of Athens, tel. 2107721529/Fax 2107721533, ZIP 157 80, Zografou Campus,
Greece.

Abstract— This paper presents a quantum algorithm for
finding minimal ESCT (Exclusive-or Sum of Complex Terms)
or ESOP (Exclusive-or Sum Of Products) expressions for any
arbitrary multi-output switching function that is not necessarily
completely specified. The proposed algorithm takes advantage of
the inherent massive parallelism of quantum circuits in order
to achieve better complexity than the conventional ones. The
proposed Exclusive-Or (xor) expressions such as ESCT can be
used to implement an arbitrary Boolean function into a reversible
or even a quantum circuit.

keywords: quantum computing, logic design 1

I. INTRODUCTION

Quantum circuits have already begun to establish them-
selves as the future in the computer design technology. Despite
the technical difficulties in implementing a complete quantum
computer, quantum circuits are already being studied thor-
oughly. Many algorithms, specifically designed for quantum
computers, have been proposed and some of them prove that,
in certain kinds of problems, a quantum computer can achieve
far better complexity than a conventional one. The three algo-
rithms that constitute, so far, the foundations of quantum al-
gorithms are the Shor’s [1], the Grover’s [2] and the Quantum
Fourier Transformation [3] algorithms. In particular, the Shor’s
algorithm can find the periodicity of a function in polyno-
mial time, providing exponential speedup which, in principle,
renders RSA and related cryptography algorithms obsolete.
Grover’s algorithm is the optimal quantum searching algorithm
even though it doesn’t achieve the spectacular speedup of
the previous one. Finally, the quantum Fourier Transform is
actually the implementation of the Discrete Fourier Transform
as a quantum circuit and has many applications in quantum
algorithms as it provides the theoretical basis to the phase
estimation procedure and is a key feature for many important
quantum algorithms. All these quantum algorithms achieve
complexities far better than their conventional counterparts.

1Preliminary version

r11

r21

r31

rn1

r12

r22

r32

rn2

r1m

r2m

r3m

rnm

0 0 0

X1

X2

X3

Xn

0

F(x)

XOR Collector row

Generalized

Toffoli

Gate

Xn

X3

X2

X1

Maitra

Cascade

(Complex Term)

Fig. 1. Reversible wave cascade CA

It seems that quantum computers are the answer in solving
complexity intensive classical problems. A very interesting
and very difficult problem for a conventional computer is to
find minimal ESCT (Exclusive-or Sum of Complex Terms)
or ESOP (Exclusive-or Sum Of Products) expressions for
an arbitrary completely or incompletely specified switching
function. Finding minimal ESCT or ESOP expressions for
a multi-output incompletely specified function is even more
difficult.

An interesting property of the ESCT and ESOP expressions
is that they can be directly mapped to cellular architectures
like the Maitra Cellular Architecture (Fig. 1) which has been
proved to be reversible [4]. Therefore expressing a Boolean
function in ESCT or ESOP form results in a reversible circuit



and may help in designing quantum circuits [4].
Some algorithms for finding minimal ESOP or ESCT

expressions for an arbitrary completely specified switching
function, but with limitations on its number of input variables
or the number of terms in its minimal forms, have been
presented in the past [5], [6], [7], [8], [22], [21], [13]. Others
have been designed in order to detect almost minimal ESOP or
ESCT expressions but for more input variables [4], [9], [10],
[21], [13], [20]. Algorithms for finding almost minimal ESCT
or ESOP expressions for incompletely specified functions are
significantly less [23], [24], [25], [26].

Finding minimal solutions for ESOP and ESCT expressions
is presently limited to only 6 input variables, using conven-
tional computers [8], [13], [22]

In [16], [17] and [18] the Grover’s algorithm [2] is used as
a framework to minimize XOR expressions.

In this work the QMin algorithm [17] is extended in order
to detect minimal ESCT or ESOP expressions for multi-output
incompletely specified Boolean functions (QMin is designed
for completely specified single-output Boolean functions). To
the best of the authors’ knowledge, this is the first quantum
algorithm that detects minimal ESCT or ESOP expressions for
a multi-output incompletely specified Boolean function.

II. THEORETICAL BACKGROUND

A. Definitions

In this section we provide some background definitions.
Definition 1: A boolean function with n-input variables and

m-outputs (multi-output function) is a mapping: f : {0, 1}n →
{0, 1}m. Variables x1, . . . , xn are called the support of f . If
m = 1 then f is a single-output boolean function. Generally, a
multi-output boolean function can be considered as m different
single-output functions.

Definition 2: Let Vi = {0, 1} and T = {0, 1, x}. A multi
output incompletely specified Boolean function with n input
variables and m outputs, is a mapping f : V1×. . .×Vn → Tm.
The minterms for which f(X1, . . . , Xn) = x are the don’t
care minterms of the function (DC-set). In these cases the
value of f (and its specified output) is unspecified. The set
of minterms for which f = 0 is defined as the OFF-set of
f . Likewise the set of minterms for which f = 1 is the ON-
set of f . Combining the above, we can produce the minterm
representation of f .

More specifically, a Boolean function can be represented
in many different ways (these are called expressions). One of
them is using the list of its minterms. This representation is
called the minterm representation of the function (MT).

The following definitions concern multi-valued Boolean
logic.

Definition 3: Let X be variable that takes a value from
V = {0, . . . , v − 1} and S ⊆ V . Then XS is a literal of X
such as XS = 1 when X ∈ S and XS = 0 when X ∈ V \S.

Definition 4: A multi-valued input, binary output function
f is a mapping f : V1 × V2 × · · · × Vn → {0, 1}, where
Vi = {0, . . . , vi − 1}.

In this paper it is sufficient to examine mappings of the
form f : {0, 1} × · · · × {0, 1} × {0, . . . , v − 1} → {0, 1}.

In order to find minimal ESOP or ESCT expressions for
a multi-output Boolean functions we will transform it to a
single-output Boolean function having its less significant input
variable multi-valued.

In accordance to the MT representation for single-output
Boolean functions depending on binary input variables, we
can define the MVMT [21] formulation for single-output
Boolean functions which have their less significant input
variable multi-valued. Instead of giving a formal definition for
this representation we will demonstrate it with the following
example.

Let f : {0, 1} × {0, 1} × {0, . . . , υ − 1} → {0, 1} (υ = 3).
Intuitively, the MVMT of f can be seen as the interleaving of
υ MTs of 2-variable functions f i, where f i = f(x1, x2, i). Let
f i = [d], [1], [c] for i = 0, 1, 2 respectively. Then the MVMT
of f is [101101000111]. More specifically (in terms of bits):
f0 = [d] = [1101], f1 = [1] = [0001], f2 = [c] = [1101].

The last digit of the MVMT (3) is produced by using the
last digits of the MT formulations of f2, f1, f0. The rest of
the digits of MVMT are produced in similar way from the
corresponding digits of the MT formulations of f2, f1, f0.
This is demonstrated in Fig. 3.

In the rest of this paper we will declare a MVMT represen-
tation of a function by enclosing it in brackets.

Definition 5: A subfunction fi, i = 0, 1, 2 of a boolean
function f(x1, . . . , xn), regarding the Boolean variable x1 of
f ’s support is defined as:
• f0 = f(0, x2, . . . , xn)
• f1 = f(1, x2, . . . , xn)
• f2 = f0 ⊕ f1

It is very easy to prove that the upper half of the MT (or
MVMT) representation of a switching function corresponds to
its f1 subfunction, while the lower half corresponds to its f0

subfunction. The f2 subfunction can, obviously, be produced
as the XOR sum of f0, f1.

Definition 6: Let xi be binary variable literals, y a bi-
nary value (constant input) and Gi arbitrary 2-input 1-
output boolean functions (1 ≤ i ≤ n). Then U =
Gn(xn, Gn−1(xn−1, Gn−2(xn−2, . . . , G1(x1, y)))) is an n-
variable complex term (or Maitra term) that depends on
variables x1, . . . , xn. Functions Gi will be called the ESCT
cell functions of the term.

The Gi ESCT cell function can be any single-output two-
input function. It has been proved in [12] that it is sufficient
for Gi to be any of the six functions x+y (cell 1), x+y (cell
2), xy (cell 3), xy (cell 4), x⊕ y (cell 5), y (cell 6) which we
will call cell set for the rest of the paper.

A product term is a special case of a complex term where the
Gi(x, y) function may be of the form: xy, x̄y, xȳ,̄ xȳ, x, y, 0, 1.
If the last four cases are not allowed then the product term is
actually a minterm.

Definition 7: An ESCT (Exclusive-or Sum of Complex
Terms) expression (some times also called reversible wave
cascade or Maitra expression) for a switching function is an
exlusive-OR sum of complex terms:

Q =
m∑

i=1

⊕Mi,



G-Step

O

r

a

c

l

e

Inversion

about mean

O(N
1/2

)

Oracle

Comparator

(Oracle output

producer)

Problem

Specific

Circuit

Expression

Estimator

ESOP or ESCT Minimization

Circuit

g
LUT

|f1>

|f0>

LUT

LUT

+

m

m

m

q

a

(bomb

function)

b

f1(xor)bomb

c

f0(xor)bomb

c

b

a

Expression Estimator for n variables

x2

x1

xn

|0>

x2

x1

x4

x1x2...xn x’1x’2...x’n (xor) x1x2...xn

|0>

x2

x1

x1+x2+...+xn

x2

x1

ESCT Primitive LUT template ESOP Primitive LUT template

G-Step

O

r

a

c

l

e

Inversion

about mean

G-Step

O

r

a

c

l

e

Inversion

about mean

x’1x’2...x’n (xor) x1x2...xn

(xor) 1

Expression Estimator (n-1

variables) for n>2 or LUT

for n=2 (ESCT) or n=1

(ESOP) as seen below

Measured XOR

expression

T
O

F
F

O
L

I

T
O

F
F

O
L

I xn

T
O

F
F

O
L

I xn

g

|f1>

|f0>

Control qBits

Control qBits

DCQ

This module produces

the required superposed

functions. This is

achieved via Hadamard

gates. The g (bomb)

function is always

required to be in

superposition, while only

the dontcare bits of f1
and f0 are required to be

in superposition. The

control bits remain

unaffected.

Fig. 2. MOQmin Algorithm hierarchy

where Mi are complex terms and m is their number in the
expression. The same variable ordering is used for every Mi.
The size, s(Q), of the expression Q is defined as the number
of complex terms inside the expression.

In the previous definition, if we use only product terms (cells
3,4,6), instead of complex terms, then the produced expression
is called an Exclusive or Sum Of Products (ESOP) expression.

An ESCT expression can be directly mapped to a special
cellular architecture, called the reversible wave cascade cellu-
lar architecture which can be seen in Fig. 1.

Definition 8: A minimal (or exact) ESCT (ESOP) expres-
sion of a single-output switching function f(x1, . . . , xn) of n
variables, is defined as the ESCT (ESOP) expression which

[d]=1101[c]=1100 [1]=0001

101 101 000 011

MT Representations (hexadecimal and binary form)

MVMT Representation (binary form)

Fig. 3. MVMT example

has the fewest number of complex terms comparing to any
other ESCT (ESOP) expression for this function.



The same definition applies for multi-output boolean func-
tions, but in this case different outputs may share common
terms, in order to reduce the overall weight.

Definition 9: The ESCT (ESOP) weight w(f) of a switch-
ing function f(x1, . . . , xn) of n variables is defined as the
number of complex terms in a minimal ESCT (ESOP) expres-
sion of f .

Since the complement of a complex term is also a complex
term [6], it holds: w(f) = w(f̄).

The ESCT and ESOP weight of a multi-valued switching
function is defined in accordance to Definition 9.

Definition 10: Let xi be binary literals, Y takes a value
from {0, . . . , v − 1}, Gi (2 ≤ i ≤ n) is a boolean function
{0, 1} × {0, 1} → {0, 1} from the cell set, and G1 is an
arbitrary mapping {0, 1} × {0, . . . , v − 1} → {0, 1}. Then
U = Gn(xn, Gn−1(xn−1, Gn−2(xn−2, . . . , G1(x1, Y )))) is
an mv-term.

The Gi, i = 2, . . . , n are the ESCT cell functions as
previously defined. The G1 mapping is defined in accordance
to these functions and its MVMT representation is produced as
the interleaving of the MT representations of each bit in the
Y multi-valued variable when applied to the corresponding
ESCT cell function of the cell set. The term

Gn(xn, Gn−1(xn−1, Gn−2(xn−2, . . . , G2(x2, z)))), where
z = 0, 1, is called the 2v-term of mv-term U and the Y multi-
valued variable is called the mv-var of U .

The complement of an mv-term (like the complement of
a complex term) is also one mv-term and has complemented
2v-term and complemented mv-var.

A XOR sum of mv-terms is a perfect way to represent
an arbitrary single-output Boolean function having its less
significant variable multi-valued.

Definition 11: Let f be a Boolean function, xn a Boolean
variable that belongs to f ’s support and f0, f1, f2 are the sub-
functions of f regarding xi. The function f can be expressed
as:

f = xnf0 ⊕ xnf1 (1)
f = f0 ⊕ xnf2 (2)
f = f1 ⊕ xnf2 (3)

These expansions are known as Shannon (Boole), positive
Davio and negative Davio respectively.

It must be noted that the above decompositions are valid
even for multi-valued single output boolean functions as long
as the x variable is binary.

B. ESOP and ESCT Minimization for multi-output Boolean
functions

In [8] algorithm XMin6 was proposed that was able to
produce minimal ESCT expressions for single-output Boolean
functions of up to six input binary variables. A generalization
of XMin6 (regarding the number of input variables of its input
functions), for functions having their less significant variable
multi-valued, can be summarized to the pseudo-algorithm
XMin. This algorithm has a flag (output expression) which
distinguishes whether the output expression will be ESOP or

ESCT. In [8] all the necessary theoretical background for this
algorithm is presented in detail.

procedure XMin(func, output expression isESCT:
Boolean)

Begin
w(func) = ∞;
If func == constant 0

w(func) = 0;
If func == constant 1 And output expression isESCT

w(func) = 0;
Else If func.number of variables == 1

w(func) = 1;
Else

foreach possible g
Begin

w(g) = XMin(g);
w(f0 ⊕ g) = XMin(f0 ⊕ g)
w(f1 ⊕ g) = XMin(f1 ⊕ g)
w(func) = MIN(w(func), w(f0 ⊕ g) +

w(g1 ⊕ g) + w(g));
End

EndIf
End

C. Grover’s Algorithm

In [2], L. Grover presented in detail a quantum algorithm
for finding a specific element in an unsorted database in
O(

√
(N)) steps (N is the number of elements in the database).

This result is much better than its conventional analogue
(O(N)).

In our case, the Oracle of the original algorithm has to be
designed to find itself the appropriate marked states. Taking
this under consideration, we have designed a different Oracle
which will be described in detail in the following sections.

g
 n-1

LUT


|f
1
>
 n-1


|f
0
>
 n-1


LUT


LUT


+
 Comparator


m


m


m


q


a

(bomb function)


b

f
1
(xor)bomb


c

f
0
(xor)bomb


c


b


a


Expression Estimator


Fig. 4. QMin-Oracle Circuit

III. ALGORITHMS

A. Previous Work

Grover’s algorithm can be seen as a generic framework for
solving many difficult, for a conventional computer, problems.
This can be done by constructing an appropriate Oracle
operator for the given problem.

In [16] Li, Thornton and Perkowski presented a quantum
algorithm based on Grover’s, that could find FPRM (Fixed



Polarity Reed Muller) expressions for a specific completely
specified Boolean function, with number of terms less than
a specific threshold. Their algorithm is actually Grover’s
algorithm using a special Oracle operator. This Oracle operator
calculates all possible FPRM expressions for the input Boolean
function and then favors those expressions that have number of
FPRM coefficients less than a specified threshold. At the end,
Grover’s algorithm will result in one of these expressions. By
constantly readjusting the threshold with the new minimum
number of FPRM coefficients and rerunning the Grover’s
algorithm, one can find minimal FPRM expressions for an
arbitrary completely specified Boolean function.

In [17] and [18], different Oracle implementations are
proposed in order to find minimal ESOP or ESCT expressions
for an arbitrary completely or incompletely specified Boolean
function. In those cases, the Oracle is modified in the same
principle as before. It is composed of two distinct parts:
The Expression-Estimator and the Comparator. The first part
calculates in parallel all possible ESOP or ESCT expressions
and determines the number of terms (complex or product) in
each one (cost function). The Comparator is the same as in
[16]. This algorithm also detects the expressions that have
number of terms (product or complex) less or equal to a certain
threshold. In the second case there is also an extra initialization
step in order to address the incompletely specified functions.
The proposed quantum algorithms were named QMin and
DCQMin respectively.

B. MOQMin

All the previously mentioned algorithms are designed to
minimize completely or incompletely specified single output
Boolean functions. Our proposed algorithm, called MOQMin,
addresses a more generalized aspect of the ESOP and ESCT
minimization problem, the minimization of incompletely spec-
ified multi-output Boolean functions. In this way, we have a
complete framework for the ESCT and ESOP minimization
problem, which can be easily customized during initialization
in order to address every variation of it. This problem is
particularly difficult to solve in a conventional computer not
only due to combinatorial explosion introduced by the single
output minimization problem itself, but also by the fact that
minimality of a multi-output Boolean function is not guaran-
teed if the corresponding single-output functions that compose
the multi-output function are minimized independently. This is
very obvious if taken under consideration the fact that even the
individual minimal single output functions can share common
terms. In this way, the problem has to be approached in a
more generalized way, a fact that adds more complexity to
the algorithm. The framework of the Grover’s algorithm has
proved to be very useful in such cases.

A hierarchical diagram of MOQMin algorithm is presented
in Fig. 2. As it can be observed, MOQMin is essentially
Grover’s algorithm, with modified Oracle. The input of the
algorithm is the characteristic function of the multi-output
function in minterm representation.

The MOQMin-Oracle is composed of two distinct compo-
nents. The first one called the Expr-Estimator is the one that

implements the weight estimation process and produces ESOP
or ESCT expressions for our input function (the for-loop in the
XMin pseudo-code). The second one, is the Comparator [16],
which compares the number of terms (complex or product) of
every produced expression with a given Threshold. It returns
1, thus denoting a marked state, if this number is less than
Threshold and 0 otherwise, thus denoting a non marked state.

The Expr-Estimator component can be seen in Fig. 4. It
is composed of three main buses. The first is initialized by
the Walsh-Hadamard gates that are deployed by the DCQ
module of Fig. 2 and stands for the g function used in the
expressions of XMin pseudo-code. Please note that the DCQ
module will always deploy Walsh-Hadamard gates for every
qbit of g. The second and the third one, are initialized as the
minterm representation of subfunctions f1 and f0 of our input
characteristic function, respectively. The DCQ module enables
us to apply the algorithm for incompletely specified Boolean
functions in the same fashion as in [18], that is by applying
Walsh-Hadamard gates in the qbits of the input functions that
correspond to don’t care minterms. The CNOT gates produce
the bitwise XOR sum of the g function (first bus) with f1 and
f0, respectively, thus producing the required g⊕f1 and g⊕f0

functions.
It is important to note that the input characteristic function to

the MOQMin quantum circuit is in the MVMT representation.
Therefore it is very easy to derive the minterm representations
of its subfunctions by taking the leftmost (f1) and the right-
most (f0) part.

The LUT operators that follow, give the number of terms
of their input function and are in fact, recursive snapshots
of the bigger Expr-Estimator circuit. As we decompose the
characteristic input function, the LUT subcircuits are com-
posed of the entire Expression Estimator of the next level
of decomposition. This recursive process ends at the level
of the multivalued variable of the characteristic function. At
this point, the LUT subcircuits (primitive LUTs) are explicitly
defined with primitive quantum gates.

The explicit implementation of these subcircuits depends
on the number of outputs of the initial Boolean function, but
in principle follows a certain pattern. For the case of ESOP
expressions, the logical OR functions needs to be implemented
because the weight always equals to 1 unless the input minterm
equals to 0. This can be easily implemented using a Toffoli
gate with the control qbit equal to |0 > and the necessary
NOT gates. For the case of ESCT expressions the subcircuit
becomes a little bit more complicated. The only two cases
where the weight is 0 is when the input minterm is either all
ones or zeros, otherwise the weight is 1. In this case, the LUT
can be implemented by two consecutive Toffoli gates an the
appropriate NOT gates in between. The number of qbits of
such LUT circuits depends on the number of outputs of the
initial circuit.

For ESOP expressions, the primitive LUT circuit can be
seen in Fig. 2 (bottom, rightmost part). For ESCT expressions,
the primitive LUT circuit can be seen in Fig. 2 (bottom,
leftmost part). For all other cases the LUT circuit is actually
the Expr-Estimator circuit defined recursively.

When the LUT operators are applied, the number of terms



for each possible ESCT or ESOP expression of functions
g, g ⊕ f1, g ⊕ f0 is calculated. The number of terms in an
expression of our initial function is their sum. Therefore, we
use a quantum adder to perform this task. Such a quantum
adder is presented in [14]. This sum is produced in the same
single step for all the possible g functions due to superposition.

The other component of MOQMin-Oracle is the Compara-
tor. The Comparator used, has been presented in [16]. A 2-
qubit Comparator can be seen in Fig. 5. It should be noted that
the Comparator is used only once and not within the recursion
performed to construct the Expression-Estimator for the initial
expression.

|0>


S
1


S
0


t
1


t
0


Fig. 5. A 2-qubit Comparator, comparing s0s1 to t0t1, implementing
function: (s1 ⊕ t1)t1 ⊕ (s1 ⊕ t1)(s0 ⊕ t0)t0

The q output of the MOQMin Oracle operator in Fig. 4
is the input to the Comparator operator. The a, b, c outputs
correspond to the g, g⊕f1, g⊕f0 functions (see XMin pseudo-
code) and are considered outputs of our quantum minimization
circuit (Fig. 2). These outputs are simply propagated through
the comparator.

Finally, the DCQ module at the beginning of the circuit is
used to initialize the quantum registers that contain the MT of
g, f1 and f0 appropriately. More accurately, Hadamard gates
are applied to all the qbits representing g so that the required
superposition of all possible states to be acquired. On the other
hand, Hadamard gates are applied only to the qbits of the
f1, f0 that correspond to the DC-Set minterms (the don’t-care
minterms). In that way, a superposition of all possible minterm
combinations is produced and the circuit has the ability to
handle incompletely specified functions [18].

The actual quantum minimization algorithm is, of course,
Grover’s algorithm, using the previously described MOQMin
Oracle circuit as the specialized Oracle operator. It takes as
input (Fig. 2), an arbitrary possibly incompletely specified,
characteristic function f and a Threshold. Its outputs are the
a, b, c, q outputs of the Oracle circuit. At the end of the execu-
tion, those expressions of f that have number of terms (either
complex or product, depending on the type of expressions we
are searching for) less or equal to the Threshold, will have,
all together, probability almost 1 (marked states), while all the
others will have probability almost 0 (unmarked states). Upon
measuring one of its outputs (for instance the a output), all the
outputs (and therefore the propagated corresponding inputs)
will collapse to those corresponding to one of the marked
states. The weight of the output expression will be given by q,
while the actual expression can be reconstructed from outputs
a, b, c.

All the above steps of the algorithm can be summarized by
the following pseudo-code:

procedure MOQMin(func)

Begin
for (each step of the Grover’s Algorithm)
Begin

do in parallel for every possible g function
//one step

w(g) = Expr Estimator(g);
w(f0 ⊕ g) = Expr Estimator(f0 ⊕ g)
w(f1 ⊕ g) = Expr Estimator(f1 ⊕ g)

End
mark(func) = threshold > (w(f0 ⊕ g) +

w(g1 ⊕ g) + w(g));
invertmarkedstates()
invertaboutmean()

End
End

3-output, 2-input

variable function

such that

f
0
=[1]hex=0001

f
1
=[e]hex=1110

f
2
=[5]hex=0101

g=|000000>

f1=|010011>

f0=|010101>

H LUT

LUT

LUT

XOR

XOR

g’=|000>

f’1=(f1 (xor) g)1

f’0=(f0 (xor) g)0

H

XOR

XOR

LUT

LUT

LUT

A
D

D
E

R

|a>

|b>

|c>

|0>

T
O

F
F

O
L

I

abc

T
O

F
F

O
L

I

abc (xor) (a+b+c)

A
D

D
E

R

DCQ

module

|a>

|b>

|c>

|0>

T
O

F
F

O
L
I

a+b+c

ESOP LUT ESCT LUT

Fig. 6. Oracle example for both the ESCT and ESOP case

For example, let f(x1, x2) → {f0, f1, f2} be a 2 input,
3 output completely specified Boolean function such that
f0 = [1] = 0001, f1 = [e] = 1110, f2 = [5] = 0101 (in hex
and binary notation respectively). The characteristic function is
[010011010101] in binary notation. After the application of the
Hadamard operator, the g register will contain a superposition
of all 26 possible functions. Consequently, right before the
LUTs, the other two registers for f1 and f0 will contain
the superposed xor-sum of the the initial f1 and f0 with all
possible g functions. In other words, in this example we have:

f1 = 010011
f0 = 010101
g =a superposition of all 26 possible functions.



As it can be confirmed by conventional algorithms [21] and
[9], the combination g = |010101 >, f1 ⊕ g = |000110 >,
f0⊕g = |000000 > provides a minimal solution of ESCT with
weight equal to 2 and for the ESOP case the minimum weight
is 3, and can be obtained by the combination g = |010011 >,
f1⊕g = |000110 >, f0⊕g = |000000 >.The diagram in Fig.
6 depicts the MOQMin-Oracle that can be used to minimize
this particular function for the ESCT or ESOP case.

The MOQMin Oracle circuit has been simulated success-
fully using the Fraunhofer Quantum Computing Simulator
[15].

IV. COMPLEXITY ESTIMATION

As it can be easily derived from the pseudo-code for XMin,
the time complexity of the conventional algorithm lies in the
main loop. If func is an n-input variables function then the
time complexity is O(3 · 22n−1 · 3 · 22n−2

. . . 3 · 220
) = O(3n ·

2
∑n−1

i=0
2i

) = O(3n · 22n−1) = O(3n · 22n

). The factor 3 is
derived by the 3 recursive calls of XMin in the pseudo-code,
while the 22n−i

factors, where i = 0 . . . n − 1, are derived
from the number of all possible g functions in every level
of the decomposition. On the other hand the estimated time
complexity of MOQMin is O(

√
2K(1 + (1 + (. . . + (1 + 3 +

K0log(K0)) + . . .) + Kn−1log(Kn−1)) + Knlog(Kn)) + C)
= O(2K/2 · (n +

∑n
i=0 Kilog(Ki))) where Ki and K are

the number of qbits required to represent the weight of the
function at each level of the recursion and C the number of
steps required by the comparator. In particular, the

√
2K factor

is derived from Grover’s algorithm complexity. Moreover, the
other factor of the initial complexity formula can easily be
derived by the recursive definition of the LUT operators. For
example, O(1+3+K0log(K0)) is the complexity of the final
LUT (1 step for the CNOT operators, 3 steps on average for
either the ESOP or ESCT LUT and K0log(K0) steps for the
adder). Using the Shannon expansion [8] we can easily derive
the worst upper bound for K or Ki for functions of more
than 1 input variables. It holds that K ≤ log(2n) ≤ n. As a
result, MOQMin’s time complexity is O(2n). Of course, there
is a significant speed-up (the complexity drops from double
exponential to exponential), but the complexity of the problem
remains exponential.

V. CONCLUSIONS AND FUTURE WORK

In this work quantum algorithms QMin [17] and DC-
QMin [18] are extended for minimizing multi-output Boolean
functions. MOQMin is a quantum algorithm that receives as
input the characteristic of an arbitrary multi-output function
and detects its ESOP or ESCT expressions with number of
terms (product or complex respectively) less than a specified
threshold. It is obvious that by repeatedly executing MOQMin
and updating the Threshold as necessary we can find minimal
expressions for a specific function. An initial estimation for the
Threshold can be obtained from conventional heuristic mini-
mizers such as exorcism-4 [20], QuiXor [21] or QuickDCMIN
[23] (ESOP case) or EMin1 [7] (ESCT case).

Future work will deal with other types of expressions such
as and-or, and-or-xor. Another issue that needs to be addressed

is whether there is a more efficient way to perform the above
minimization.

VI. ACKNOWLEDGMENTS

This work has been funded by the project PENED 2003.
This project is part of the OPERATIONAL PROGRAMME
”COMPETITIVENESS” and is co-funded by the European
Social Fund (75%) and National Resources (25%).

REFERENCES

[1] P. W. Shor, ”Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”, SIAM J. Computing 26, pp.
1484-1509 (1997).

[2] L.K. Grover, ”A fast quantum mechanical algorithm for database search”,
Proc. 28th Ann. ACM Symp. on Theory of Comput., 212219, 1996.

[3] D. E. Knuth ”The Art of Computer Programming”, Vol. 2: Seminumerical
Algorithms, Second ed., Addison-Wesley, 1981.

[4] A. Mishchenko, M. Perkowski, ”Logic Synthesis of Reversible Wave
Cascades”,International Workshop on Logic And Synthesis 2002, New
Orleans, Louisiana, June 4-7, 2002.

[5] G. Papakonstantinou, ”Synthesis of cutpoint cellular arrays with
exclusive-OR collector row”, Electronic Letters, 13(1977).

[6] D. Voudouris, S. Stergiou, G. Papakonstantinou ”Minimization of re-
versible wave cascades”, IEICE Trans. on Fund., Vol E88-A, No. 4, pp.
1015-1023, 2005/04.

[7] D. Voudouris, G. Papakonstantinou ”Maitra Cascade Minimization”, 6th
IWSBP, 2005, Freiberg (Sachsen), Germany.

[8] D. Voudouris, M. Sampson, G. Papakonstantinou ”Exact ESCT Minimiza-
tion for functions of up to six input variables”, Elsevier Integr. VLSI J. 41,
1 (Jan. 2008), 87-105. DOI= http://dx.doi.org/10.1016/j.vlsi.2007.01.003.

[9] D. Voudouris, M. Kalathas, G. Papakonstantinou ”Decomposition of
Multi-output Boolean Functions”, HERCMA 2005, Athens, Hellas.

[10] G. Lee ”Logic synthesis for celullar architecture FPGA using BDD”,
ASP-DAC 97, pp 253-258 Jan 1997.

[11] K.K. Maitra ”Cascaded switching networks of two-input flexible cells”
IRE Trans. Electron. Comput., pp, 136-143, 1962.

[12] R. C. Minnick, ”Cutpoint cellular logic” IEEE Trans. Electron. Comput.,
vol. EC-13, Dec, 1964, pp. 685-698.

[13] A. Gaidukov, ”Algorithm to derive minimum esop for 6variable func-
tion”, 5th IWSBP, September 2002.

[14] Phil Gossett, ”Quantum Carry Save Arithmetic”, quant-ph/980861
(1998)

[15] http://www.qc.fraunhofer.de/
[16] Lun Li, Mitch Thornton and Marek Perkowski ”A Quantum CAD

Accelerator based on Grover’s algorithm for finding the minimum Fixed
Polarity Reed-Muller form”, ISMVL’06, Proc. of the ISMVL’06 vol. 00,
pp. 33- 33, 17-20 May 2006.

[17] M. Sampson, D. Voudouris, G. Papakonstantinou, ”A Quantum Algo-
rithm for Finding Minimum Exclusive-Or Expressions,” ISVLSI, pp. 416-
421, IEEE Computer Society Annual Symposium on VLSI (ISVLSI ’07),
2007.

[18] M. Sampson, D. Voudouris, M. Kalathas, G. Papakonstantinou, ”A
Quantum Algorithm for finding Minimum Exclusive-Or Expressions for
incompletely specified Boolean Functions”, HERCMA 2007, Athens,
2007.

[19] Song, N., Perkowski, M.A., ”EXORCISM-MV-2: minimization of ex-
clusive sum of products expressions for multiple-valued input incompletely
specified functions”, ISMVL1993, Proc. of ISMVL93, pp.132-137, 24-27
May 1993.

[20] A. Mishchenko, M. Perkowski ”Fast Heuristic Minimization of
Exclusive-Sums-of-Products”, 5th International Reed-Muller Workshop,
Starkville, Mississippi, August, 2001

[21] Stergiou S., Voudouris D., Papakonstantinou G., ”Multiple-Value
Exclusive-Or Sum-Of-Products Minimization Algorithms”, IEICE Trans.
on Fund., 2004, vol 87, part 5, pp. 1226-1234.

[22] T. Hirayama, Y. Nishitani, T. Sato ”A Faster Algorithm of Minimizing
AND-EXOR Expressions”, IEICE Trans. on Fund., Vol E85-A, No. 12,
pp. 2708-2714, 2002/12.

[23] M. Kalathas, D. Voudouris, G. Papakonstantinou A heuristic algorithm
to minimize ESOPs for multiple output incompletely specified functions,
GLSVLSI 2006, Philadelphia, USA, 2006.



[24] T. Kozlowski, E. L. Dagless, J. M. Saul An enhanced algorithm for the
minimization of exclusive-or sum-of-products for incompletely specified
functions, 1995 IEEE Intrn. Conf. on Computer Design (ICDD95), pp.
244, 1995.

[25] N. Song, M. A. Perkowski Minimization of exclusive sum-of-products
expressions for multiple-valued input, incompletely specified functions,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 15, Nr. 4, April 1996.

[26] G. Lee, R. Drechsler ETDD-based Synthesis of term-based FPGAs for
incompletely specified boolean functions, ASP-DAC 1998.


